Tuesday, April 2, 2024

Metric inside a cylinder in cylindrical coordinates

UPDATE April 14, 2024: We corrected a sign error in g₀₀' and g₀₀''. Correcting the error seems to remove contradictions.

----

Last week we were able to sort out our calculation errors with the Riemann curvature tensor in cylindrical coordinates.

On March 20, 2024 we tried to solve the metric inside a uniform cylinder, using cartesian coordinates and a metric perturbation. We found out that there is no solution to the Einstein field equations. However, our calculation contained errors because we forgot the factor g²¹ of skewed coordinates x and y. Also, there were sign errors.

Let us repeat the task, this time using cylindrical coordinates. They are orthogonal.

We are looking for a static, cylindrically symmetric solution which does not depend on time or on the z coordinate.

The stress-energy tensor and the metric


The coordinates are denoted t (coordinate 0), r (1), φ (2), and z (3). The stress-energy tensor is:

       T =

             ρ          0           0           0

             0          0           0           0

             0          0           0           0

             0          0           0           0.

We assume that the metric g of spacetime is very close to the flat Minkowski metric η in cylindrical coordinates:

       η  =

            -1          0           0           0

             0          1           0           0

             0          0           r²          0

             0          0           0           1.

We use the metric signature (- + + +).

We can then calculate an approximate value of the Ricci curvature tensor R by "trace reversing".

       Tr  =  g⁰⁰ T₀₀ + g¹¹ T₁₁ + g¹¹ T₂₂ + g³³ T₃₃

             =  -T₀₀ + T₁₁ + 1 / r² * T₂₂ + T₃₃

             =  -ρ,

where we assumed that g₀₀ is almost exactly -1.

       R   =  T   -  1/2 Tr  *  η

             =  T  +  1/2 ρ   *  η

             =

            1/2 ρ      0               0                   0
            
            0             1/2 ρ        0                   0

            0             0              1/2 ρ r²         0

            0             0               0            1/2 ρ.

The Ricci curvature to the φ direction appears to be r²-fold, compared to other directions. But that is just an artefact from the fact that the unit of length to that direction is r-fold compared to other directions. The Ricci curvature of a spherical surface is ~ 1 / R² in cartesian coordinates, where R is the radius. If we switch to a unit of length which is r-fold, then R shrinks by ~ 1 / r, and the curvature increases ~ r².

Let us check that we obtained the right Ricci tensor. The Ricci scalar R is

       R  =  g⁰⁰ R₀₀ + g¹¹ R₁₁ + g²² R₂₂ + g³³ R₃₃

            =  -1/2 ρ  + 1/2 ρ  + 1/2 ρ  + 1/2 ρ 

            =  ρ.

The Einstein tensor is:

       R  -  1/2 R g  =

             ρ          0          0          0

             0          0          0          0

             0          0          0          0

             0          0          0          0 

       =  T.

The line element in cylindrical coordinates is 

       ds²  =  g₀₀ dt² + g₁₁ dr² + g₂₂ dφ² + g₃₃ dz²,

where we choose g₂₂ to be exactly:

       g₂₂  =  r².

Is this choice allowed? We can define the value of the coordinate r by

       r  =  proper circumference / (2 π).

Thus, it should be allowed that we fix the metric of φ to r².

The metric g which we will calculate will not exactly be the flat Minkowski metric η in cylindrical coordinates. Consequently, the Einstein tensor R - 1/2 R g will slightly differ from the stress-energy tensor T, because g is used twice in the calculation of the term R g.


Christoffel symbols


The metric does not depend on t, φ, or z. The derivatives with respect to them are zero. We denote the derivative with respect to r by the prime '.










A non-zero Christoffel symbol must involve the coordinate 1 (r) because gkl can only be non-zero if k = l, and only a derivative with respect to r can be non-zero.

The non-zero Christoffel symbols involving the coordinate 0 (t) are of the form Γ¹₀₉, Γ⁰₁₉, or Γ⁹₀₁, where 9 denotes any coordinate, and we have used the fact that one is allowed to permute the subscripts of Γ.

       Γ¹₀₀  =  1/2 g¹¹ * -dg₀₀ / dr  =  -1/2 g₀₀' / g₁₁

       Γ⁰₁₀  =  1/2 g⁰⁰ * dg₀₀ / dr   =   1/2 g₀₀' / g₀₀.

The Christoffel symbol with only 1 (r) is

       Γ¹₁₁  =  1/2 g¹¹ dg₁₁ / dr      =   1/2 g₁₁' / g₁₁.

The non-zero Christoffel symbols involving the coordinate 2 (φ) are of the form Γ¹₂₉, Γ²₁₉, or Γ⁹₁₂:

       Γ¹₂₂  =  1/2 g¹¹ * -dg₂₂ / dr  =  -1/2 * 2 r / g₁₁

                                                     =  -r / g₁₁,

       Γ²₁₂  =  1/2 g²² * dg₂₂ / dr   =  1 / r.

The non-zero Christoffel symbols involving the coordinate 3 (z) are of the form Γ¹₃₉, Γ³₁₉, or Γ⁹₁₃:

      Γ¹₃₃  =  1/2 g¹¹ * -dg₃₃ / dr   =  -1/2 g₃₃' / g₁₁,

      Γ³₁₃  =  1/2 g³³ * dg₃₃ / dr    =   1/2 g₃₃' / g₃₃


R₀₀


Only a derivative against the coordinate 1 (r) can differ from zero.

       R₀₀  =  dΓ¹₀₀ / dr

                  + (Γ⁰₀₁ + Γ¹₁₁ + Γ²₂₁ + Γ³₃₁)  Γ¹₀₀

                  - 2 Γ⁰₀₁ Γ¹₀₀

               =  -1/2 g₀₀'' / g₁₁  +  1/2 g₀₀' g₁₁' / (g₁₁)²

                   - 1/2 g₀₀' / g₁₁ *
 
                         (-1/2 g₀₀' / g₀₀  +  1/2 g₁₁' / g₁₁

                          + 1 / r  +  1/2 g₃₃' / g₃₃)
   
               ≈  -1/2 g₀₀''  -  1/2 g₀₀' / r.

Here we used the assumption that g₀₀', etc., are very small. We also assumed that g₁₁ is very close to 1.

We have

       R₀₀  =  -1/2 g₀₀''  - 1/2 g₀₀' / r

               =  1/2 ρ.

We require that g₀₀'(0) = 0. The derivative cannot be non-zero at the center.

The solution is

       g₀₀(r)  =  -1/4 ρ r²  -  C.

The Picard-Lindelöf theorem implies that it is the unique solution. The solution agrees with the newtonian gravity potential.


R₁₁


       R₁₁  =  -dΓ⁰₁₀ / dr  -  dΓ²₁₂ / dr  -  dΓ³₁₃ / dr

                   + (Γ⁰₀₁ + Γ²₂₁ + Γ³₃₁)  Γ¹₁₁

                    -  (Γ⁰₁₀)²  -  (Γ²₁₂)²  -  (Γ³₁₃)²

              =  -1/2 g₀₀'' / g₀₀ +  (1/2 g₀₀')² / (g₀₀)²

                  + 1 / r²

                  - 1/2 g₃₃'' / g₃₃  +  (1/2 g₃₃')² / (g₃₃)²

                  + 1/2 g₁₁' / g₁₁ *

                      (1/2 g₀₀' / g₀₀ + 1 / r + 1/2 g₃₃' / g₃₃)

                  - (1/2 g₀₀' / g₀₀)²

                  - 1 / r²

                  - (1/2 g₃₃' / g₃₃)²

            ≈  1/2 (g₀₀''  +  g₁₁' / r  -  g₃₃'')

            =  1/2 ρ.

R₂₂


       R₂₂  =  dΓ¹₂₂ / dr 

                  + (Γ⁰₀₁ + Γ¹₁₁ + Γ²₂₁ + Γ³₃₁) Γ¹₂₂

                   - 2 Γ²₂₁ Γ¹₂₂

              =  -1 / g₁₁  -  r * -1 / (g₁₁)² * g₁₁'

                  - r / g₁₁ *

                      (1/2 g₀₀' / g₀₀  +  1/2 g₁₁' / g₁₁

                       - 1 / r  +  1/2 g₃₃' / g₃₃)
   
              =  -1 / g₁₁  +  1 / g₁₁  +  r g₁₁' / (g₁₁)²

                   - r / g₁₁ *

                      (1/2 g₀₀' / g₀₀  +  1/2 g₁₁' / g₁₁

                       + 1/2 g₃₃' / g₃₃)
   
              ≈  1/2 r  (g₀₀'  +  g₁₁'  -  g₃₃')
   
              =  1/2 r² ρ.


R₃₃


       R₃₃  =  dΓ¹₃₃ / dr

                  + (Γ⁰₀₁ + Γ¹₁₁ + Γ²₂₁ + Γ³₃₁) Γ¹₃₃

                  - 2 Γ³₁₃ Γ¹₃₃

               =  -1/2 g₃₃'' / g₁₁  +  1/2 g₃₃' g₁₁' / (g₁₁)²

                   - 1/2 g₃₃' / g₁₁ *

                    (1/2 g₀₀' / g₀₀  +  1/2 g₁₁' / g₁₁

                     + 1 / r  -  1/2 g₃₃' / g₃₃)

               ≈  -1/2 g₃₃''  -  1/2 g₃₃' / r

               =  1/2 ρ.

The solution is

       g₃₃(r) = -1/4 ρ r²  -  C'.

The Picard-Lindelöf theorem implies that it is the unique solution.


The metric g₁₁(r)


The equations for R₁₁ and R₂₂ are:

       1/2 (g₀₀''  +  g₁₁' / r  -  g₃₃'')          =  1/2 ρ,

       1/2 r (g₀₀' + g₁₁' - g₃₃')                  =  1/2 r² ρ
<=>
       1/2 (g₀₀' / r  +  g₁₁' / r  -  g₃₃' / r)  =  1/2 ρ.

The equations are equivalent, since g₀₀'' = g₀₀' / r, and similarly, g₃₃'' = g₃₃' / r. We have

       ρ  =  g₀₀''  +  g₁₁' / r  -  g₃₃''

           =  -1/2 ρ  +  g₁₁' / r  + 1/2 ρ

           =  g₁₁' / r

  =>

       g₁₁(r)  =  ρ r² / 2  +  constant.


A cylinder where ρ(r) is not constant


Above we found a solution for a cylinder where the mass density is a constant ρ. But we had to use the results that g₀₀'' = g₀₀' / r, and similarly, g₃₃'' = g₃₃' / r, which are not true for a general cylindrically symmetric density distribution ρ(r).

Let us repeat the calculations in the general case.

The equations for Rii are:

       2 R₀₀         =  -g₀₀''  -  g₀₀' / r

                         =  ρ(r),

       2 R₃₃         =  -g₃₃''  -  g₃₃' / r

                         =  ρ(r),

       2 R₁₁         =  g₀₀''     +  g₁₁' / r  -  g₃₃''

                         =  ρ(r),

       2 R₂₂ / r²  =  g₀₀' / r  +  g₁₁' / r  -  g₃₃' / r
   
                         =  ρ(r).

If we sum the two last equations, sum the first and subtract the second, we obtain:

       g₁₁' / r  =  ρ(r).


Radial pressure


Suppose that we put a tight membrane around the cylinder and squeeze it. There is a negative pressure inside the membrane. It has to be counteracted by a positive radial pressure in the cylinder.

If the counteracting pressure is solely radial, then it must have a formula

       p / r,

where p is a constant. This in order to cancel the force F which squeezes the cylinder.


                ______
             /             \
           |       O        | <------ tight membrane
             \_______/

                   ^
                   |  strong tube O at the center

  
The pressure would be infinite at r = 0. To prevent that, we drill a round hole into the cylinder at the center, and put a strong round tube there to counteract the radial force.

We assume that the metric g is almost exactly the Minkowski metric η with cylindrical coordinates. The stress-energy tensor is

        T  =

              0        0        0        0
              0        p / r   0        0
              0        0        0        0
              0        0        0        0,

       Tr  =  p / r  *  1 / g₁₁

             ≈  p / r.

We trace-reverse T to obtain the approximate Ricci tensor.

       R  ≈  T  -  1/2 Tr η

            =

             1/2 p / r    0               0                      0

             0               1/2 p / r    0                      0

             0               0              -1/2 p r             0

             0               0               0          -1/2 p / r.

The equations for Rii are:

       2 R₀₀        =  -g₀₀''  -  g₀₀' / r

                        =  p / r,

       2 R₃₃        =  -g₃₃''  -  g₃₃' / r

                        =  -p / r,

       2 R₁₁         =  g₀₀''     +  g₁₁' / r   -  g₃₃''

                        =  p / r,

       2 R₂₂ / r²  =  g₀₀' / r  +  g₁₁' / r  -  g₃₃' / r
   
                        =  -p / r.

Summing the two last equations, summing the first and subtracting the second yields:

       p / r  =  g₁₁' / r.
 
Then

       g₀₀''  -  g₃₃''  = 0

and
    
       g₀₀' / r  -  g₃₃' / r  =  -2 p / r.


Conclusions


If the calculations are correct, then we are only able to find an approximate metric for a uniformly dense cylinder.

UPDATE: They were not correct!

On November 5, 2023 we tentatively proved that a changing pressure breaks the Einstein field equations.

No comments:

Post a Comment