Saturday, May 4, 2024

Thin disk: the z metric is strange in general relativity

We will use our April 13, 2024 formulae for a rotationally symmetric system (a generalized "cylinder"). As usual, we assume that the fields are weak. We use the cylindrical coordinates (t, r, φ, z). The metric we denote by g.

The metric g is assumed to be very close to the flat cylindrical metric:

       η  =

            -1     0     0     0
             0     1     0     0
             0     0     r²    0
             0     0     0     1.


Thin disk


         ^ r
         |         thin disk, radius R, thickness L
         |       |
          ------|-----------------> z
                 |
 
              z = 0


We denote the mass density of the thin disk by ρ(r). The disk has a radius R and its center is located at z = 0. The thickness of the disk is L.

The stress-energy tensor is

       T  =

             ρ     0     0     0
             0     0     0     0
             0     0     0     0
             0     0     0     0,

and the Ricci tensor

       R  =
  
            1/2 ρ      0              0               0

            0             1/2 ρ       0               0

            0             0             1/2 ρ r²     0

            0             0             0         1/2 ρ.

The formulae are:

2 R₁₃  =  dg' / dz  +  1 / r * dg₁₁ / dz                = 0,
                                                        
2 R₀₀  =  -g''  -  g' / r  -  d²g / dz²                      = ρ,
                                                         
2 R₃₃  =  -g₃₃''  -  g₃₃' / r  +  d²g / dz² 
                                                        
                                                 - d²g₁₁ / dz² 

                   + 2 dg₁₃' / dz  +  2 / r * dg₁₃ / dz  = ρ,
                                                 
2 R₁₁  =  g''  -  g₃₃''  +  g₁₁' / r  -  d²g₁₁ / dz²

                   + 2 dg₁₃' / dz                                  = ρ,
                       
2 R₂₂ / r²  =  g' / r  -  g₃₃' / r  +  g₁₁' / r

                                            + 2 / r * dg₁₃ / dz  = ρ,

where the prime ' denotes the r derivative, and the plain letter g denotes the metric component g₀₀.

Let us sum the equations for R₀₀, R₁₁, R₂₂, and subtract the equation for R₃₃:

       2 g₁₁' / r  -  2 d²g / dz²  =  2 ρ
  <=>
       g₁₁'  =  r d²g / dz²  +  r ρ.

The equation for R₀₀ yields:

       g₁₁'  =  -r g''  -  g'.

The integral function is:

       g₁₁  =  -r g'  +  1,

which has the correct value 1 at large r.

The equation for R₂₂ gives:

       g₃₃'  =  g₁₁'  +  g'  +  2 dg₁₃ / dz  -  r ρ

               =  -r g''  -  r ρ  +  2 dg₁₃ / dz.

Let us set the skew g₁₃ identically zero. Then

       g₃₃'  =  -r g''  -  r ρ.

The integral function is:

       g₃₃  =  2 + g  -  r g'  +  Int(r, r ρ),

where

                                 ∞
        Int(r, r ρ)  =   ∫   r ρ(r) dr
                               r

denotes the definite integral of r ρ from r to infinity. Then g₃₃ has the correct value 1 at large r.


Analysis of g₃₃


Let us compare the value of g₃₃ at r = 0 inside the thin disk and just outside the surface of the disk.

There is a major difference in the value: inside, g₃₃ is larger by Int(r, r ρ). The g₃₃ metric inside the disk is much more stretched than just outside.

Could this just be an artefact from the choice of coordinates?

We can stretch the proper distance of the coordinates lines z = constant outside the disk, in order to get the metric component 33 to match inside and outside. But is this redefinition "natural"? What does it look like from the viewpoint of geodesics which run to the r direction?


                  | geodesic to r direction
                  |
                  |
        -----------------> z

The geodesics are determined by the g₁₁ metric component. The geodesics turn to the side where g₁₁ is larger. Above we derived:

        g₁₁  =  -r g'  +  1.

Let us keep the total mass M of the thin disk constant. We increase its radius R and make the disk thinner (thickness L), keeping the density ρ constant.

The newtonian gravity field is almost homogeneous close to the the surface of the disk, close to the center of the disk. By enlarging the disk with the procedure above, we can make

        |g'(0)  -  g'(L)|

as small as we like. The radial metric g₁₁ is essentially the same inside and outside the disk. The geodesics to the r direction essentially run at z = constant.

On the other hand, the integral 

       Int(r, r ρ),

stays very much different inside the disk and outside the disk.

If geodesics determine the "proper" coordinate lines, then the g₃₃ metric, indeed, is very different inside the disk and outside it.

Also,

       g₃₃  =  2  +  g  -  r g'  +  Int(r, r ρ),

the value of g₃₃ can be quite large inside the disk, near the center. The integral Int(r, r ρ) can get a large value if the disk has a large radius R, even though the newtonian gravity potential is very close to zero, and g = g₀₀ is very close to -1.


A mass ring causes a major g₃₃ metric change


We have

                                 ∞
        Int(r, r ρ)  =   ∫   r ρ(r) dr.
                               r


                         ■  ring
                         R

                ---------|-----------------> z
                         0

                         ■  ring


Let us put a mass M as a ring of a width L and a radial thickness K at a radius R around z = 0. If we increase R, then we make K smaller:

       K ~ 1 / R

to keep the mass of the ring constant M. The integral Int(0, r ρ) stays constant as we increase R.

Thus, the "enclosed volume" of the ring, the volume with 

       -L / 2 < z < L / 2,

       r < R,

has the g₃₃ metric stretched, and the stretching is independent of R.

When R is very large, then g₀₀ is very close to -1 everywhere. But we still have a substantial change in the spatial metric in a large volume. Is this reasonable?

We may also let ρ to approach zero as R grows, but we keep the total mass M constant. Still, the metric in the enclosed volume remains significantly stretched. The value of the integral is not much affected.

What about rubber sheet models of gravity? If we put a total mass M on a tense rubber sheet, and let the area density ρ of M to approach zero, then, obviously, the rubber sheet approaches a flat configuration. 

The predictions of general relativity do not look reasonable. Also, we found here a major difference between general relativity and rubber sheet models of gravity.


The metric inside a spherical shell of mass


Let the radius of a thin spherical shell be R. Its center is at r = 0 and z = 0. Let us use our April 13, 2024 formulae to determine the metric inside a thin, uniform spherical shell of mass. Above we derived:

       g₁₁  =  -r g'  +  1,

       g₃₃  =  2  +  g  -  r g'  +  Int(r, r ρ).

The formulae look different. Inside the sphere, the derivative g' is zero. What is the value of Int(r, rρ)? It is a constant because for a "latitude" α on the sphere, we have

       r  ~  sin(α)

and the projection of the area density of the shell on the equatorial plane is

       ~  1 / sin(α).

Also, g is constant. The metric inside the shell is flat, because both g₁₁ and g₃₃ are constant.

The metric component g₃₃ inside the shell is constant, but it is not 1. Note that we have made the skew g₁₃ identically zero in the solution. These are not the standard Schwarzschild coordinates, since in them the skew would not be zero. We have g₃₃ > 1 at z = 0 and r > R, while in the standard Schwarzschild coordinates, the corresponding tangential metric is 1.

The value of
       
        g  -  r g'  +  Int(r, r ρ)

must probably stay constant as we dive through a thin shell?

Otherwise, g₃₃ would differ inside and outside the thin shell.

But the product of

        r  ≈  R sin(α)

and

        g'  ~  sin(α)

is different for different α. How can it be? We had the skew zero outside the shell. Is it so that one cannot make it zero inside the shell?














The coordinate lines of the Schwarzschild metric in the standard Schwarzschild metric outside the shell have the "barrel" distortion.

In order to orthogonalize, we have to change the coordinate lines of z to look like a "hourglass".

But inside the shell, the metric is flat. The z coordinate lines must be straight, in order for them to be orthogonal to the r coordinate lines.

The "abrupt" turn of the coordinate lines at the shell probably explains why g₃₃ seemingly changes at the shell. The component g₃₃ is not discontinuous. The shell has a finite thickness > 0.

Let us determine the internal circumference of the shell and compare to the external.

In the Schwarzschild interior and exterior solutions in spherical coordinates, the tangential metric is set to 1. The circumference is the same there. We have already checked that the Schwarzschild exterior solution, written in cylindrical coordinates, satisfies the April 13, 2024 formulae.

The Schwarzschild solution explains why g₃₃ changes when we go through the shell. The radial metric in spherical coordinates is stretched, the tangential metric is not. When the latitude α is not 90 degrees, then some of the radial stretching is projected to g₃₃. Inside the shell there is no radial stretching. Thus, we expect the g₃₃ metric to change as we go through the shell. That is exactly what happens.


Conclusions


General relativity gives a strange prediction for the g₃₃ metric inside a thin disk, and close to the surface of the disk. Our Minkowski & newtonian gravity model predicts a much smaller change in the g₃₃ metric.

In the future, observations of disk-shaped gravity lenses in the sky may decide which gravity model is correct.

Sunday, April 28, 2024

A cylinder in Minkowski & newtonian gravity

In the following we usually assume that if a metric g in vacuum has the Einstein tensor value (residual value ΔT) very close to a zero tensor, then g is a good "approximation" of a solution. However, it might be that g is not a good approximation! The nonlinearity of the equations means that g could be very far from the correct exact solution. Any small deviation ΔT ≠ 0 can cause a drastic change to g. This is similar to paper bending.

On March 14, 2024 we showed that summing Schwarzschild metric perturbations for each atom in a spherical mass shell produces a drastically wrong metric.

Let us call approximate general relativity a (fuzzy) assumption that

1.   the metric g₀₀ which we obtain from the newtonian gravity potential V is very close to the solution of general relativity;

2.   we get a good approximate metric g in vacuum if ΔT is very small for g, except in the case of:

3.   the metric around a spherically symmetric mass, where we must use the Schwarzschild metric; even if ΔT is very small, the metric may be totally wrong.


Now we (may) know approximate solutions of the metric around a cylinder in general relativity. It is time to compare it to what our own gravity model Minkowski & newtonian gravity predicts. Our model is based on the extra inertia which a gravity field imposes on a photon or a test mass.


      ^  r
      |
      |                               cylinder
       ----------> z             =========


Mechanical clocks are slowed down in our model because gravity gives more inertia to the parts of the clock, and at the same time, the energy in the potential in force fields is diminished because of the low gravity potential. Two effects which we would expect to happen, even if we would not know general relativity.

Slowdown of clocks is what is meant by "time slowing down".

A photon of energy E in a low newtonian gravity potential -V carries an extra inertia of V / c². That is why the speed of light is slower. One may imagine that moving a test mass m for a distance s involves a "field energy" flow of m V for the distance s. This explains the slow speed of light.


  ^ r
  |
  |                                  L
   --------> z        ============  cylinder

                                ^ 
                                |
                                •   m test mass
                                |
                                |  rope


The stretching of the spatial metric is an additional process. When a test mass m approaches the cylinder, energy is shipped from the field to the kinetic energy of m, or if we have a rope which does not allow m to speed up, then to the work done on the rope. Light moves slower to the direction of r. We interpret this that the "metric of space" has been stretched in the direction of r.

Let us have a cylinder of a length L. The force on m is

         F  =  m G ρ / r,

where ρ is the mass of the cylinder per a unit length.


Exact general relativity and a cylinder


Suppose that exact general relativity has a solution g for the vacuum metric around a cylinder, and g is a small perturbation from the flat metric.

The linear equations that we derived on April 13, 2024 must then be approximately true for g. Our formulae give Ricci curvatures which are not zero, because we omitted the products of two Christoffel symbols Γ * Γ. But the deviations from zero are necessarily very small.

Suppose that we derive from our formulae an equation for g. Is it so that g must approximately satisfy that equation? Probably yes, but we should do a proper error analysis for each derived formula. 

We may in many cases derive equations which the solution of the Einstein equations, if any, must approximately satisfy.

We tentatively showed on April 22, 24, and 26, 2024 that there is no solution for our formulae if a shear is present inside the cylinder. The contradiction may be numerically substantial. There cannot exist any metric g which approximately satisfies our equations.

If the Einstein equations would have a solution for that configuration, then we can probably prove that that solution would approximately satisfy our formulae. We have a proof then that the Einstein equations cannot have a solution.

The reasoning above tells us that we can use our formulae as a guide which tells us what a solution in exact general relativity would look like, if such a solution exists.

This implies that we can compare Minkowski & newtonian gravity to our formulae. The formulae can guide us.


The radial metric g₁₁ agrees between approximate general relativity and Minkowski & newtonian


Let us guess that when we lower m closer to the cylinder, the field energy gained by m is shipped over the distance r. The spatial metric of r is then

       g₁₁  ≈  1  +  2 m G ρ / (m c²)

              =  1  +  2 G ρ / c².

Generally, we have

       g₁₁  =  1  +  2 F r / (m c²)

              =  1  -  g' m c² r / (m c²)

              =  1  -  r g'
  =>
       g₁₁' =  -g'  -  r g''.

Let us compare this to what we calculated using approximate general relativity. On April 22, 2024 we derived the formula:

       g₁₁'  =  r  d²g / dz².

We also derived:

       2 R₀₀  =  -g''  -  g' / r  -  d²g / dz²  =  0
  =>
       d²g / dz²  =  -g''  -  g' / r
  =>
       g₁₁'  =  -r g''  -  g'.

The result agrees with the Minkowski & newtonian prediction!


              M
               ●  --------------------> z axis
                      
                         R      r
                                  •  m


How does this match with what we know about the Schwarzschild metric? Our formulae above are for a general rotationally symmetric mass distribution. It does not need to look like a cylinder.

In the Schwarzschild metric, Minkowski & newtonian predicts the radial metric gR from the energy shipment from the central mass M to the test mass m. The distance R from M to m is generally larger than the distance r from the symmetry axis z. How can the shorter distance r work above? The explanation has to be that the Schwarzschild metric in cylindrical coordinates is not orthogonal. The value of g₁₁ does not tell the whole story about the metric in cylindrical coordinates. The skew, g₁₃ plays a role, too.


Generalizing Birkhoff's theorem to two spherical masses


Approximate general relativity says:

    2 R₂₂ / r²  =  g' / r  -  g₃₃' / r  +  g₁₁' / r 

                                       + 2 / r * dg₁₃ / dz     =  0,

    2 R₀₀        =  -g''  -  g' / r  -  d²g / dz²          =   0.








         





In Minkowski & newtonian, the reason for the skew g₁₃ ≠ 0 might be that the spatial metric is stretched in an oblique direction. The Schwarzschild metric has the barrel distortion, if presented in cartesian coordinates. The radial spatial metric is stretched around the central mass M.

Let us find out what approximate equations a solution of general relativity for two masses M must satisfy. Our April 13, 2024 equations may get us quite far in the endeavour.


     ^ r
     |
     |                   L          L
      ---------- ● --------|-------- ● ----------> z
                 M          0         M


The masses are located symmetrically at positions -L and L on the z axis.

We know that the Schwarzschild perturbation for each M satisfies our formulae, and our formulae are linear. Therefore, the sum of the Schwarzschild perturbations satisfies the formulae. Can we prove that any solution of the Einstein equations where g₀₀ is very close to the metric derived from the newtonian potential V, is very close to this sum of two Schwarzschild perturbations?

Birkhoff's theorem states that the only static metric around a spherical M is the Schwarzschild metric. Thus, for a single small mass M, we know that the solution g is very close to the metric derived from the newtonian g₀₀. What about two masses M?

On April 22, 2024 we solved g₁₁' from g₀₀. If we assume that g₁₁ is asymptotically 1 far away, we can determine the value of g₁₁ uniquely at any point, from the function g₀₀. From now on, we can assume that g₀₀ and g₁₁ are known (approximately).

2 R₃₃  =  -g₃₃''  -  g₃₃' / r  +  d²g / dz² 
                                                        
                                                   - d²g₁₁ / dz² 

                  + 2 dg₁₃' / dz  +  2 / r * dg₁₃ / dz  = 0,
                                                 
2 R₁₁  =  g''  -  g₃₃''  +  g₁₁' / r  -  d²g₁₁ / dz²

                  + 2 dg₁₃' / dz                                  = 0,
  
2 R₂₂ / r²  =  g' / r  -  g₃₃' / r  +  g₁₁' / r

                                           + 2 / r * dg₁₃ / dz  = 0.

The three formulae above concern g₃₃ and g₁₃. Other functions are known. Can we determine unique values for g₃₃ and g₁₃?

There is some flexibility in drawing the z = constant coordinate lines. The lines must match with g₀₀. A displacement of the z = constant lines is a perturbation. The change to the value of g₀₀ in the displacement is a second order perturbation, and thus negligible.

We conclude that we are able to perturb the z metric freely, as long as the three equations above are satisfied. We cannot distill unique values for g₃₃ and g₁₃ separately from the three equations. Any attempt to eliminate g₃₃ eliminates also g₁₃, and vice versa. The individual values of g₃₃ and g₁₃ depend on the choice of coordinates.

Let us assume that g₁₃ is identically zero everywhere: we have defined the z coordinate in the way where it is always orthogonal to r. Then we can solve g₃₃' explicitly from g₀₀. Let us check if the solution satisfies all the three equations for g₃₃.

We calculated on April 22, 2024:

       d²g₁₁ / dz²  =  -r d²g' / dz²,

       g₁₁' / r  =  d²g / dz².

The equation for R₂₂ gives:

       g₃₃'  =  g'  +  g₁₁'

               =  g'  +  r d²g / dz².

Then

       g₃₃''  =  g''  +  d²g / dz²  +  r d²g' / dz².

The equation for R₁₁ says:

       g₃₃''  =  g''  +  g₁₁' / r  -  d²g₁₁ / dz²

                =  g''  +  d²g / dz²  +  r d²g' / dz².

Thus, our solution for g₃₃ agrees with that equation. The equation about R₃₃ says:

       g₃₃''  +  g₃₃' / r  -  d²g / dz²  +  d²g₁₁ / dz²  = 0
  <=>
       g''  +  d²g / dz²  +  r d²g' / dz²

       + g' / r  +  d²g / dz²

       - d²g / dz²

       - r d²g' / dz²                                                = 0
  <=>
       g''  +  g' / r  +  d²g / dz²                              = 0.

The equation for R₀₀ implies the above:

       2 R₀₀  =  -g''  -  g' / r  -  d²g / dz²                = 0.

We showed that out choice of g₃₃ together with g₁₃ satisfies all equations of g₃₃.

We showed that we are allowed to make the skew g₁₃ zero and we can still find g₃₃ which satisfies the formulae of April 13, 2024.

The metric g₃₃ is strictly determined by g₀₀, once we have "gauge fixed" g₁₃ = 0. The metric g₁₁ is strictly determined even without gauge fixing.

Let us then consider the sum of the Schwarzschild perturbations for each M. The sum satisfies the April 13, 2024 formulae, but g₁₃ is not identically zero in the standard Schwarzschild coordinates.

Orthogonalization. The way to orthogonalize a rotationally symmetric metric is to start from r = 0, and draw the new coordinate lines Z = constant in such a way that they are always orthogonal to the r = constant coordinate lines. We obtain new coordinates, in which the reformulated metric G has the skew component G₁₃ zero.


Generalized Birkhoff's theorem for two masses. If the Einstein field equations have a rotationally symmetric solution for two spherically symmetric masses centered on the z axis, then the solution is very close to the sum of the Schwarzschild metric perturbations for each mass. Here we assume that the metric of time, g₀₀, is very close to the one derived from the newtonian gravity potential. We also assume weak fields.

Sketch of proof. Let us have fixed cylindrical coordinates r, φ, z where we place the two masses.

Let us assume that (r, φ, z, g) solves the Einstein equations exactly for the two masses. Using the orthogonalization above, we orthogonalize the z coordinate, yielding Z and G. Then (r, φ, Z, G) solves the Einstein equations exactly, and consequently, is an approximate solution of our April 13, 2024 formulae.

Let (r, φ, z, g') be the sum of the Schwarzschild perturbations for each mass. It is an approximate solution of the Einstein field equations, and is rotationally symmetric. We orthogonalize the z coordinate, yielding Z' and G'. Then (r, φ, Z', G') is an approximate solution of the Einstein equations and of the April 13, 2024 formulae.

We assumed that the metric of time, g₀₀, is very close to the one derived from the newtonian gravity potential. We have above shown that we can uniquely solve the April 13, 2024 formulae, starting from g₀₀. Let the solution be G''.

Both G and G' are approximate solutions of the April 13, 2024 formulae. If, for example, G₁₁ differs substantially from G₁₁'', then some intermediate result in our calculation of G'' would have a substantially different value for the metric G. This means that G would not be not an approximate solution of the April 13, 2024 formulae. A contradiction. The same applies to G₃₃.

Every component in G and G' must be very close to the corresponding component in G''. This means that G is very close to G'. Q.E.D. 


We can further generalize Birkhoff's theorem to any number of spherically symmetric masses centered on the z axis.


Minkowski & newtonian agrees with general relativity for spherically symmetric masses placed on the z axis


Let us have a test mass m close to such a configuration of (small) masses M on the z axis. We define that the energy shipping of gravity field energy in this case happens individually from the center of each mass M to m. Then the metric which Minkowski & newtonian simulates is the sum of the Schwarzschild perturbations for each M.

If general relativity has a solution for this configuration, then generalized Birkhoff's theorem implies that the solution is very close to what Minkowski & newtonian says.


A thin disk in Minkowski & newtonian: g₃₃ differs a lot from general relativity


Let us try to figure out what Minkowski & newtonian says about a thin disk.

On March 14, 2024 we showed that general relativity is horribly nonlinear for a spherical mass shell. We cannot obtain a reasonable metric by summing the Schwarzschild perturbations for each atom in the shell.


                   r
                   ^ 
                   |
                   |      |        m test mass
                    -----|------- • -------> z
                          |
                    thin disk
                                     ^  
                                     |
                                     • m test mass


Above, we have already calculated that Minkowski & newtonian agrees with general relativity in the g₁₁ metric, if we assume that the field energy is carried over the distance r when we lower the test mass m closer to a rotationally symmetric system.

Our April 13, 2024 formulae give, assuming that the skew g₁₃ is identically zero:

        g₃₃'  =  g'  +  g₁₁'

                =  g'  -  r d²g / dz²

                =  -r g''.

The integral function:

       d(-r g'  +  g) / dr  =  -g'  -  r g''  +  g'

                                    =  -r g''.

Then
                               ∞
       g₃₃(r)  =  1  -   / (-r g'  +  g)
                             r

                  =  1  -  (-1  +  r g'  -  g)

                  =  2  +  g  -  r g'.

If we have a test mass m on the z axis, and we move it closer to the thin disk, then the gravity field does work on m.


        ^ r
        |
        |        thin disk
        |      |
        |      | 
   0  --     |   <---- • m test mass
        |      |   
        |      | 
        |
        ------|----------------------> z
               0


Let m be at a location (0, z) close to the disk, and let m move toward the disk. The gravity force on m is almost constant.

Most of the gravity field pull energy for m is shipped from a short distance, ~ 2 z. As m comes closer to the disk, the metric g₃₃ should approach 1, according to Minkowski & newtonian.

This is in contradiction to general relativity, which says that on the z axis:

       g₃₃  =  2  +  g₀₀.

As m goes to a lower potential, g₀₀ < 0 increases, and g₃₃ > 1 grows.

Here Minkowski & newtonian differs a lot from general relativity. If we have a disk-like gravitational lens, and we view it from a flat side, the gravity lens effect in Minkowski & newtonian is much less than in general relativity.


                     ●  M


                  <-- • m

        -----------------------------> z


General relativity claims that the edges of the disk stretch the g₃₃ metric surprisingly much when m is close to the disk. This is in contrast to what general relativity says about a single point mass M: if M would be almost directly above m, then the metric component g₃₃ would almost exactly be 1. It is counterintuitive to claim that if we put many such masses M in a ring around m, then g₃₃ somehow becomes stretched.

We have to look at gravitational lenses in the sky. Is there any data about a flat lens viewed from the flat side?

Astronomers (wrongly) seem to use Schwarzschild perturbations to calculate the lens effect. But for a flat lens, the g₃₃ metric differs greatly from the sum of Schwarzschild perturbations for each mass element in the lens.


Discussion of general relativity and a thin disk: one can fool general relativity by imitating a certain gravity field


Question. Can we derive something clearly contradictory or strange from the g₃₃ metric of general relativity for a thin disk?


The stretched metric g₃₃ is like if general relativity would think that the flat disk is a part of a large spherical shell of mass, and the gravity energy is shipped from the center of this large shell, over a very large distance. Consequently, a test mass m has hard time moving in the z direction: the g₃₃ metric appears stretched!

The newtonian gravity field of the disk close to surface of the disk is almost homogeneous. Locally, the field does look like that of a large spherical shell. The formulae of April 13, 2024 determine the metric quite locally from the newtonian gravity potential V. They are not aware of the big picture. This explains why general relativity believes that g₃₃ is substantially stretched.

It is as if we could fool general relativity by constructing an imitation of a certain gravity field. One cannot fool Minkowski & newtonian because it looks at the genuine energy shipping distance. It cannot be fooled with the local field.


Conclusions


Let us close this very long blog post. We saw that Minkowski & newtonian and general relativity agree for spherical masses placed on the z axis. For most astronomical objects, the two gravity models produce essentially identical results.

Our generalized Birkhoff's theorem is a new way to prove exact results about general relativity. We have to assume that the metric of time g₀₀ closely imitates the newtonian gravity potential, and that the fields are weak. Then we can prove results of the type:

if general relativity has a solution, the solution necessarily has a certain property.

Proving the existence of a solution is almost impossible in general relativity. Our technique circumvents that problem.

We also showed that Minkowski & newtonian and general relativity differ greatly in their predictions of the z metric of a thin disk facing to the z direction. General relativity only looks at the local field and thinks that it is the field of a large spherical shell of mass, while Minkowski & newtonian considers the whole system. We will investigate this peculiar feature of general relativity in another blog post. Does it make sense?

Friday, April 26, 2024

The metric around and inside a cylinder, derived from newtonian gravity potential

On April 13 and April 22, 2024 we derived two equations for g₁₁ in vacuum:

       dg₁₁ / dz  =  -r dg₀₀' / dz,

and

       dg₁₁ / dr  =   r d²g₀₀ / dz².

Since

       d²g₁₁ / (dr dz)  =  d²g₁₁ / (dz dr),

we obtain an equation for g₀₀. Do all gravity potentials satisfy that equation?


"NinjaDarth" (2023) gives the Schwarzschild metric in cylindrical coordinates:















There, ρ corresponds to our r coordinate, and rs is the Schwarzschild radius. We recently checked that the Schwarzschild metric in cylindrical coordinates has the Ricci tensor R = 0, when the curvatures are calculated with our formulae of April 13, 2024. Maybe the formulae are finally correct after a month of polishing?


        ---- ●●●●---●●● ----> z axis
                spheres 


Thus, we know that the Schwarzschild metric satisfies all our equations. Since the equations are linear, any combination of spheres centered on the z axis satisfies all the equations, even if the spheres overlap.

But is it possible to create all cylindrically symmetric mass distributions from overlapping spheres centered on the z axis?


There exists a metric in vacuum around a thin disk?


                  z = 0
                     |
                   --|---------> z axis
                     |

        thin circular disk


A thin uniform circular disk might be one which cannot be combined from centered spheres. 

Let us check if its gravity potential V satisfies

       d²g₁₁ / (dr dz)  =  d²g₁₁ / (dz dr).

The metric of time g₀₀ we, for simplicity, denote just by g. We calculate in vacuum around the thin disk.

       -dg' / dz  -  r dg'' / dz  =  r d³g / dz³
  <=>
       -g'' / dz  -  1 / r * dg' / dz  -  d³g / dz³  =  0.

We have

       -g''  -  g' / r  -  d²g / dz²  =  0

in vacuum for all newtonian gravity potentials. It implies the above equation!

What about higher partial derivatives? They do match, too. We have to look up a mathematical theorem which proves that g₁₁ has a well defined value then.

The asymptotic condition g₁₁ = 1, g₃₃ = 1 at infinity


The equations

       dg₁₁ / dz  =  -r dg₀₀' / dz,

and

       dg₁₁ / dr  =   r d²g₀₀ / dz²

define the value of g₁₁(r, z) in two ways: assume that g₁₁(r, z) = 1 very far away. Integrate the equations above to calculate g₁₁(r, z) in two ways. Do the values match?

The gravity potential V of a point mass m at the origin, obviously, satisfies this condition. The same holds for a point mass at any location. The equations above are linear. Any mass distribution can be formed as a sum of point masses. Hence, the condition holds for any mass distribution.

In our equations of April 13, 2024, only the r derivative of g₃₃ appears. The z behavior of g₃₃ has to be determined by integrating from infinity.


Varying pressure along z leads to a contradiction inside a cylinder?


Let u(r, z) be the pressure in the z direction inside a cylinder and s(r, z) the shear between r and z.

The stress-energy tensor is

       T  =

                ρ    0    0    0
                0    0    0    s
                0    0    0    0
                0    s    0    u.

The trace is

       Tr  =  -ρ  +  u,

and the Ricci tensor

       R  =  T  -  1/2 Tr g

            =

     1/2 (ρ + u)    0                      0                          0

     0                    1/2 (ρ - u)       0                          s

     0                    0                      1/2 r² (ρ - u)       0

     0                    s                      0          1/2 (ρ + u).

The equations are:

2 R₁₃  =  dg' / dz  +  1 / r * dg₁₁ / dz      = 2 s,
                                                        
2 R₀₀  =  -g''     -  g' / r     -  d²g / dz²       = ρ + u,
                                                         
2 R₃₃  =  -g₃₃''  -  g₃₃' / r  +  d²g / dz² 
                                                        
                                                  - d²g₁₁ / dz² 

                     + 2 dg₁₃' / dz

                     + 2 / r * dg₁₃ / dz               = ρ + u,
                                                 
2 R₁₁  =  g''  -  g₃₃''  +  g₁₁' / r  -  d²g₁₁ / dz²

                     + 2 dg₁₃' / dz                      = ρ - u,
                       
2 R₂₂ / r² 

          =  g' / r  -  g₃₃' / r  +  g₁₁' / r

                     + 2 / r * dg₁₃ / dz               = ρ - u.

Summing the equations for R₀₀, R₁₁, and R₂₂, and subtracting the equation for R₃₃ gives:

       2 g₁₁' / r  -  2 d²g / dz²  =  2 ρ  -  2 u
  <=>
       g₁₁' / r  =  d²g / dz²  +  ρ  -  u
  <=>
       dg₁₁ / dr  =  r d²g / dz²  +  ρ r  -  u r.

The first equation gives:

       dg₁₁ / dz  =  -r dg' / dz  +  2 r s.

Then,

       d²g₁₁ / (dz dr)  =  -dg' / dz  -  r dg'' / dz
     
                                     2 s + 2 r s'

       =

       d²g₁₁ / (dr dz)  =  r d³g / dz³

                                     +  r dρ / dz  -  r du / dz.
  <=>
       -dg'' / dz  -  dg' / dz  - d³g / dz³

       =  dρ / dz  -  du / dz  -  2 s / r  -  2 s'

       =  dρ / dz  +  du / dz,

where the last line comes from the equation for R₀₀.

We obtain:

       du / dz  =  -s / r  -  s'.

Is this equation reasonable? It looks strange.


                           <----- F₁
                            
                          --------
         u₁ ----->    | box |     <-- u₂
                          --------

                          F₂  -->
   ^  r
   |
    ---------------------------------> z


The shear force F grows as r grows. The unit box 1 × 1 × 1 in the diagram feels a horizontal net force from the shear. The net force causes the pressure to be different on the left side and the right side of the box. We have omitted the shear forces in the r direction.

Thus, the term -s' makes sense. But the term -s / r is not reasonable.

In this example we did not need to assume anything about g₁₃.


Discussion about "dynamic" systems and the Einstein field equations


On November 5, 2023 we tentatively proved that the Einstein field equations cannot handle a changing pressure. There exists no solution for the equations.

In March and April 2024, we tried to solve an approximate metric for a rotationally symmetric system, often a cylinder. It looks like that we do get a very good approximate solution in the cases where there is no shear inside the cylinder. For a mass distribution with no pressure, the solution can be directly calculated from the newtonian gravity potential V of the mass. Solving the equations succeeds inside the cylinder, and in the vacuum surrounding it.

But a shear, even in the very simple form of a tangential pressure along the φ dimension, seems to prevent solutions of the Einstein field equations.

If we interpret a spatial dimension as a "time" coordinate, a shear seems to introduce a "dynamic" behavior to the system. The problem with the Einstein equations may be that they cannot handle a "dynamic" behavior.

For a century, people have, in vain, tried to prove that solutions do exist for the Einstein field equations. The best results so far, by Demetrios Christodoulou and Sergiu Klainerman, and others, show that a small perturbation of the Minkowski metric in vacuum is allowed. There exists a solution for the Einstein field equations in that case.

If there were an efficient iterative method which solves the Einstein field equations, then it might be relatively simple to prove that exact solutions exist. Just iterate the method and prove that it (rapidly) converges to an exact solution.

On March 19, 2024 we wrote that if one would always be able to find a small metric perturbation h which approximately solves the Einstein equations for a small metric tensor ΔT, then we would probably have a very fast converging solution of the Einstein field equations.

Let us try to solve the metric g in vacuum through an iterative method. Let g be an approximate solution. Let

       R  -  1/2 R g  =  ΔT.

We then look up a small perturbation h such that 

       R  -  1/2 R h  ≈  ΔT.

We get a better approximate solution from the metric

       g - h.

Our calculations in the past two months have shown that:

1.  if ΔT is physically impossible – does not respect conservation laws, and so on – then there probably is no h;

2.   if ΔT contains shear, then there probably is no h.


If our iterative method produces such ΔT, then the method does not work.


Conclusions


We now have evidence that general relativity fails in "dynamic" systems. The "dynamics" can be spatial as well as temporal.

Wednesday, April 24, 2024

Tangential pressure inside a cylinder

UPDATE April 29, 2024: In this example, we can use symmetry to argue that dg₁₃ / dz, dg₁₃' / dz, and dg₁₃'' / dz are all almost zero at the midpoint of a long cylinder. We do not need to orthogonalize the metric.

Note that the dg₁₃ / dz are not zero at the midpoint. Symmetry only makes the "skew" g₁₃ zero at the midpoint, but not its z derivatives.


       ^ r                barrel distortion
       |                         ____------____
       |                           /       |      \     coordinate
       |                         |         |         |    lines
        --------> z                 =====
                                short cylinder


In the barrel optical distortion, the skew "leans" to the right on the left side of the cylinder and to the left on the right part.

----

We use the metric signature (- + + +). The metric g is assumed to be very close to the flat cylindrical metric:

       η  =

            -1          0          0          0

             0          1          0          0

             0          0          r²         0

             0          0          0          1.

Let the pressure in the tangential φ direction be q and the pressure in the radial direction p. We have

       p(r)   =  P / r  +  Q(r),

where P is a constant. Here

       Q'(r)  =  q / r.

We assume that r and φ are orthogonal in the metric g. There might be a shear stress s between r and φ?

The stress-energy tensor is

       Tμν  =

           ρ          0          0           0

           0          p          s           0

           0          s          q r²       0

           0          0          0           0












To determine the stress-energy tensor T, we used the formulae of the Karl Schwarzschild 1916 paper of an interior solution. There,

       T²₂  =  -q

denotes the "proper" positive pressure q which an observer would measure (though the minus sign in -q remains unexplained). The component

       T₂₂  =  T²₂  g₂₂  =  q r².

Karl Schwarzschild uses the metric signature (- - - +), where time is the 4th component.

The trace of the stress-energy tensor T is

       Tr  =  g⁰⁰ ρ  +  g¹¹ p  +  g²² q r²  +  2 g¹² s

             ≈  -ρ  +  p  +  q.

The Ricci tensor is

       Rμν  ≈  T  -  1/2 Tr g

               =

  1/2 ρ + 1/2 p    0                        0                       0
  + 1/2 q

   0                      1/2 ρ + 1/2 p     s                       0
                            - 1/2 q

   0                      s            1/2 ρ r² - 1/2 p r²         0
                                          + 1/2 q r²

   0                      0                        0     1/2 ρ - 1/2 p
                                                             - 1/2 q


Ricci curvatures


2 R₁₃  =  dg' / dz  +  1 / r * dg₁₁ / dz    = 0,
                                                        
2 R₀₀  =  -g''     -  g' / r     -  d²g / dz²    = ρ + p + q,
                                                         
2 R₃₃  =  -g₃₃''  -  g₃₃' / r  +  d²g / dz² 
                                                        
                                                  - d²g₁₁ / dz² 

                     + 2 dg₁₃' / dz

                     + 2 / r * dg₁₃ / dz             = ρ - p - q,
                                                 
2 R₁₁  =  g''  -  g₃₃''  +  g₁₁' / r  -  d²g₁₁ / dz²

                     + 2 dg₁₃' / dz                    = ρ + p - q,
                       
2 R₂₂ / r² 

          =  g' / r  -  g₃₃' / r  +  g₁₁' / r

                     + 2 / r * dg₁₃ / dz             = ρ - p + q.

The first equation gives:

       dg₁₁ / dz     =  -r  dg' / dz,
  =>
       d²g₁₁ / dz²  =  -r  d²g' / dz².

Sum the two last and use the two previous:

      -2 d²g / dz²  + 2 g₁₁' / r  =  2 ρ  +  2 p  +  2 q
  <=>
       g₁₁' / r  =  d²g / dz²  +  ρ  +  p  +  q.

At z = 0, we get from the equation for R₂₂:

       g₃₃'  =  g₁₁'  +  g'  -  ρ r  +  p r  -  q r

               =  r d²g / dz²  +  ρ r  +  p r  + q r

                            + g'  -  ρ r  +  p r  -  q r

               =  r d²g / dz²  +  g'  +  2 p r
  =>
       g₃₃''  =  d²g / dz²  +  r d²g' / dz²  +  g''

                  + 2 p  +  2 p' r.

Do g₃₃' and g₃₃'' satisfy the equation for R₃₃?

Calculate g₃₃' / r + g₃₃'' at z = 0:

       g₃₃' / r  +  g₃₃''  =  d²g / dz²  +  g' / r

                                     + 2 p

                                     + d²g / dz²

                                     + r d²g' / dz²

                                     + g''

                                     + 2 p  +  2 p' r

                                 =  d²g / dz²  -  d²g₁₁ / dz²

                                      - ρ  -  p  -  q

                                      + 4 p  +  2 p' r

                                 =  d²g / dz²  -  d²g₁₁ / dz²

                                      - ρ  +  3 (P / r  +  Q)

                                      + 2 (-P / r² + q / r) * r

                                      -  q

                                 =  d²g / dz² - d²g₁₁ / dz²

                                      - ρ  +  P / r  +  3 Q  +  q.

The equation for R₃₃ says:

       g₃₃'' +  g₃₃' / r  =  d²g / dz²  -  d²g₁₁ / dz² 

                                      - ρ  +  P / r  +  Q  +  q.

A contradiction:  3 Q = Q.

The contradiction is the same as in our April 22, 2024 post about an r, z shear inside a cylinder.

What about the equation for R₁₁ at z = 0? It says:

       g''  -  g₃₃''  +  g₁₁' / r  -  d²g₁₁ / dz² = ρ + p - q
  <=>
       g₃₃''  =  g''  +  d²g / dz²  +  ρ  +  p  +  q

                   + r d²g' / dz²  -  ρ  -  p  +  q.
  =>
      p  +  p' r  =  q
  <=>
      P / r  +  Q  -  P / r² * r  +  Q' r  =  q
  <=>
      P / r  +  Q  -  P / r  +  q  =  q
  <=>
      Q  =  0.

The contradiction is the same as for R₃₃.


An analysis of the shear


                 |
                 |   p₁
                 |
                 v

             _____
            |         |
            |_____|
             
                 ^
                 |   p₂
    ^ r              
    |
     --------> φ



Let the box be 1 × 1 × 1 in the coordinates r, φ, and z. Since the pressure p₁ from up is larger than the pressure p₂ from down, there have to exist shear forces which support the box.

If we would draw the shear forces into the diagram, they would look like the ones which we drew on April 22, 2024.

There is a paradox, though: if the shear s decreases when we go to the right in the diagram, what happens when we have gone a full circle 2 π?


Conclusions


This example is simpler than our April 22, 2024 post where the cylinder had shear between the r and z coordinates. We obtain the exact same contradiction as on April 22.

Monday, April 22, 2024

Gravitational lensing outside a finite cylinder

Our April 21, 2024 post brought up a very important observation: we can test general relativity by looking at gravitational lenses in the sky.


Gravitational lenses in the sky


Our calculations suggest that the approximate spatial metric perturbation around a finite cylinder is very different from the perturbation which we obtain by summing Schwarzschild metric perturbations for the mass elements which make up the cylinder.

But in the literature no one mentions that the gravitational lens of an elongated object would be anything special. There are filament-like structures in the sky. These should act like cylinders as gravitational lenses.














Above, in the image, we have the inferred dark matter distribution in the 2024 paper by N. Natarajan et al. (Figure 3, galaxy cluster MACS 0416). The dark matter is shown as blue haze.

















M. Annunziatella et al. (2017) present another mass density profile for MACS 0416 (Figure 2 in the paper).

Our calculations on April 13, 2024 suggest that the lens effect near a finite cylinder comes solely from the newtonian gravity effect on time, g₀₀, not from a distorted radial spatial metric.

In the Schwarzschild metric, the lens effect is twice the newtonian gravity effect, because of the stretched radial metric.

If the authors use a sum of Schwarzschild metric perturbations, they will think that the mass of the filament is only 1/2 of the mass predicted by general relativity.

At first sight, the image above does not "look like" that the mass of the filament between the two large mass concentrations would be underestimated.

It could well be that the Schwarzschild metric is the correct way to model cylinder lens effects! Then general relativity is wrong.


Matthias Bartelmann (2010), in section 1.4 of the paper in the link, writes that one uses a "newtonian metric", whose formula (28 in  the paper) seems to be the Schwarzschild metric.













Douglas Clowe et al. (2006) analyzed the lensing "strength" in the Bullet Cluster (Figure 1 in their paper). The lensing looks a lot like two Schwarzschild metric perturbations.

If the mass distribution is two spherical masses, like in the Bullet Cluster, then we get a very good approximation for the metric by summing the Schwarzschild perturbations. The cylinder metric requires that there is a continuous filament of mass.

Most papers about lensing ignore the discussion of general relativity.


The entire metric around a finite cylinder


Let us use our formulae to approximate the vacuum metric around a finite cylinder.

2 R₁₃  =  dg' / dz  +  1 / r * dg₁₁ / dz              = 0,
                                                        
2 R₀₀  =  -g''  -  g' / r   -  d²g / dz²                    = 0,
                                                         
2 R₃₃  =  -g₃₃''  -  g₃₃' / r  +  d²g / dz² 
                                                        
                                                   - d²g₁₁ / dz² 

                    + 2 dg₁₃' / dz  +  2 / r * dg₁₃ / dz = 0,
                                                 
2 R₁₁  =  g''  -  g₃₃''  +  g₁₁' / r  -  d²g₁₁ / dz²

                    + 2 dg₁₃' / dz                                = 0,
                       
2 R₂₂ / r²  =  g' / r  -  g₃₃' / r  +  g₁₁' / r

                    + 2 / r * dg₁₃ / dz                         = 0.

We will delay this calculation to a later time.


Conclusions


The observations about the gravitational lens effect of a filament in the sky are not accurate enough, yet. They do not reveal if general relativity calculates correctly the metric inside a cylinder and around it.

Metric inside a cylinder: shear and nonuniform radial pressure

Once we found the correct (?) approximate equations for the Ricci curvatures, it is surprisingly easy to find approximate solutions of g for any mass distribution in cylindrical coordinates.

Our equations do not contain any "second order" terms where there is a product of two metric perturbations. Finding exact solutions for the Einstein equations is notoriously difficult. Apparently, the second order terms make it difficult.


Nonuniform radial pressure and shear


The equations can be solved easily if the radial pressure is p / r, where p is a constant. What about more complicated pressure fields?


                          |  p₁  >  p₂
                          |
                          v
    s shear
    ^             (F₁ + F₂) / 2  
    |                <------
                     ______                                 
      F₁  ^      |           |    |    F₂ < F₁
            |      |______|    v

                      ------>
                 (F₁ + F₂) / 2

                          ^
                          |  p₂

                     ------> s shear
      ^ r
      |
       -------> z


The radial pressure is initially

       P / r,

where P is a constant. If we use a shear force F, we can manipulate the radial pressure. Let us set the shear s on the r, φ plane to the direction r to

       s(r, z)  =  K  -  S(r) z,

where K is a (largish) constant > 0 and S(r) > 0.

Then the shear reduces the pressure p as we go closer to the center of the cylinder. Let in the diagram, the box be a cube 1 × 1 × 1. The net force |F₁| - |F₂| which lifts the box up is

       S(r).

The pressure is then:

       p(r)  =  P / r  +  Q(r),

where P is a constant, and Q'(r) = S(r).


We can assume an orthogonal metric


We assume that the metric is cylindrically symmetric. Can we assume that the metric is orthogonal?

If we start from the flat metric in cylindrical coordinates, then the metric is orthogonal, of course. But if we perturb the metric in a cylindrically symmetric way, then the coordinate lines of r = constant and z = constant can start to "bulge", when viewed in the perturbed metric. The coordinate lines are no longer orthogonal, when measured in the perturbed metric.






















Can we define new coordinates in such a way that the coordinate lines become orthogonal again? It is obvious (?) that we can draw almost horizontal Z = constant lines in such a way that they intersect the r = constant lines at right angles. The new coordinates r, Z have an orthogonal metric.

Thus, we can assume that the metric g has no off-diagonal components.


The stress-energy tensor


The stress-energy tensor is

       T  =

               ρ         0         0         0

               0         p         0         s

               0         0         0         0

               0         s         0         0,

and its trace

       Tr  =  g⁰⁰ ρ  +  g¹¹ p   +  2 g¹³  s

             =  -ρ  +  p  -  2 g₁₃ s

             =  -ρ  +  p.

The approximate Ricci tensor

       R  =  T  -  1/2 Tr g

            =   

   1/2 ρ + 1/2 p   0                       0                      0

   0                      1/2 ρ + 1/2 p    0                      s

   0                      0            1/2 ρ r² - 1/2 p r²      0

   0                      s                        0    1/2 ρ - 1/2 p


Ricci curvatures


2 R₁₃  =  dg' / dz  +  1 / r * dg₁₁ / dz

                                                      = 2 K - 2 S z,
                                                        
2 R₀₀  =  -g''  -  g' / r   -  d²g / dz²   

                                                      = ρ + P / r + Q,
                                                         
2 R₃₃  =  -g₃₃''  -  g₃₃' / r  +  d²g / dz² 
                                                        
                                                   - d²g₁₁ / dz² 

                      + 2 dg₁₃' / dz  +  2 / r * dg₁₃ / dz 

                                                       = ρ - P / r - Q
                                                 
2 R₁₁  =  g''  -  g₃₃''  +  g₁₁' / r  -  d²g₁₁ / dz²

                     + 2 dg₁₃' / dz            = ρ + P / r + Q,
                       
2 R₂₂ / r²  =  g' / r  -  g₃₃' / r  +  g₁₁' / r

                     + 2 / r * dg₁₃ / dz     = ρ - P / r - Q.

The first equation gives:

       dg₁₁ / dz     =  -r dg' / dz  +  2 K r  -  2 S z r
  =>
       d²g₁₁ / dz²  =  -r d²g' / dz²  -  2 S r

                           =  -r d²g' / dz²  -  2 Q' r.

Sum the two last and use the two previous:

      -2 d²g / dz²  + 2 g₁₁' / r  =  2 ρ + 2 P / r + 2 Q
  <=>
       g₁₁' / r  =  d²g / dz²  +  ρ  +  P / r  +  Q.

       g₃₃'  =  g₁₁'  +  g'  -  ρ r  +  P  +  Q r

               =  r d²g / dz²  +  ρ r  +  P  +  Q r

                            + g'  -  ρ r  +  P  +  Q r 

               =  r d²g / dz²  +  g'  +  2 P  +  2 Q r
  =>
       g₃₃''  =  d²g / dz²  +  r d²g' / dz²  +  g''

                                                + 2 Q  +  2 Q' r.

       g₃₃' / r  +  g₃₃''  =  d²g / dz²  +  g' / r

                                                + 2 P / r  +  2 Q

                                    + d²g / dz²

                                    + r d²g' / dz²

                                    + g''  +  2 Q  +  2 Q' r

                                =  d²g / dz²

                                    + r d²g' / dz²  +  2 Q' r

                                    + 2 P / r  +  4 Q

                                    + g''  +   g' / r  +  d²g / dz² 
                   
                                =  d²g / dz²  -  d²g₁₁ / dz²

                                     + 2 P / r  +  4 Q

                                     - ρ  -  P / r  -  Q

                                 =  d²g / dz²  -  d²g₁₁ / dz²

                                     - ρ  +  P / r  +  3 Q.

       g₃₃''  +  g₃₃' / r  =  d²g / dz²  -  d²g₁₁ / dz² 

                                     - ρ  +  P / r  +  Q.

We obtain a contradiction: 3 Q = Q.


Working with shear stresses


We are not familiar with working with shear stresses. The calculation above may be erroneous.

Is it possible to have shear stresses with such simple functions:

       T₁₃  =  T₃₁  =  K  -  S(r) z  ?

The torques of the shear stresses T₁₃ and T₃₁ cancel each other out. Our box in the above diagram will not start to spin. The shear causes the radial pressure p to be larger at larger r.

The shear does not produce a pressure in the z direction because the forces to the left and to the right are equal in the diagram.


Conclusions


We were able to derive the exact same contradiction in our April 24, 2024 post where we manipulate the radial pressure by putting a tangential pressure on the coordinate φ.

As if general relativity cannot handle pressure which changes spatially. Shear forces are then involved.

Recall that we on November 5, 2023 tentatively proved that general relativity cannot handle a pressure which changes in time.