Friday, April 26, 2024

Discontinuous derivative of the metric at a cylinder surface?

There is something strange in a formula of the previous blog post. Is the derivative of the radial metric g₁₁ discontinuous at the surface of a cylinder?
  

    ^ r
    |                          R ------------------------
    |                                
     --------------->  z                    ρ

                                   ------------------------
                                           cylinder


Let p and q be zero, and the density ρ > 0 constant inside the cylinder. Let R be the radius of the cylinder. Let us look at the r derivative of the radial metric g₁₁:

       g₁₁' / r  =  d²g₀₀ / dz²  +  ρ  +  p  +  q.

At the surface of a cylinder, r = R, ρ(r) drops abruptly to zero.

If the cylinder is very long, the value of |d²g₀₀ / dz²| is very small? Then

       g₁₁'  =  dg₁₁ / dr

necessarily is discontinuous at R.


The r derivative of g₁₁(r) seems to be discontinuous in the Schwarzschild metric, too. This might not be a problem.


What kind of a gravity potential g₀₀ satisfies all equations?


We have two equations for g₁₁:

       dg₁₁ / dz  =  -r dg₀₀' / dz,

and

       dg₁₁ / dr  =   r d²g₀₀ / dz²  +  r (ρ + p + q).

Since

       d²g₁₁ / (dr dz)  =  d²g₁₁ / (dz dr),

we obtain an equation for g₀₀. Do all gravity potentials satisfy that equation?


"NinjaDarth" (2023) gives the Schwarzschild metric in cylindrical coordinates:















There, ρ corresponds to our r coordinate, and rs is the Schwarzschild radius. We recently checked that the Schwarzschild metric in cylindrical coordinates has the Ricci tensor R = 0, when the curvatures are calculated with our formulae of April 13, 2024. Maybe the formulae are finally correct after a month of polishing?


        ---- ●●●●---●●● ----> z axis
                 spheres 


Thus, we know that the Schwarzschild metric satisfies all our equations. Since the equations are linear, any combination of spheres centered on the z axis satisfies all the equations, even if the spheres overlap.

But is it possible to create all cylindrically symmetric mass distributions from overlapping spheres centered on the z axis?


                     |
                   --|---------> z axis
                     |
              thin disk


A thin circular disk might be one which cannot be combined from centered spheres. 

Let us check if its gravity potential satisfies

       d²g₁₁ / (dr dz) = d²g₁₁ / (dz dr).

The metric of time g₀₀ we, for simplicity, denote just by g. We calculate in the vacuum around the thin disk.

       -dg' / dz     -  r dg'' / dz  =

        d²g / dz²  +  r d²g' / dz².

It looks like there is no simple formula for the gravity potential V of a uniform circular disk. Let us simplify the equation above:

      -g'  -  r g''  =  dg / dz  +  r dg' / dz  +  C₁,

where C₁ is a constant. This is equivalent to:

       d(-r g) / dr  =  d(r dg / dz) / dr  +  C₁
  <=>
       -r g  =  r dg / dz  +  C₁ r  +  C₂,

where C₂ is a constant.

Let z the midpoint of the thin disk. By symmetry, dg / dz = 0 there. We obtain:

      g  =  -C₁  -  C₂ / r.

The formula matches a sphere, for which the metric of time is

      g₀₀  =  -1  +  M / r,

where M is a constant. But the formula probably does not match a thin disk. Did we derive a contradiction?

How about a long cylinder? Does g₀₀ for it match our condition?




***  WORK IN PROGRESS  ***

Wednesday, April 24, 2024

Tangential pressure inside a cylinder

In this example, we can use symmetry to argue that dg₁₃ / dz, dg₁₃' / dz, and dg₁₃'' / dz are all zero at the midpoint of the cylinder. We do not need to orthogonalize the metric.

We use the metric signature (- + + +). The metric g is assumed to be very close to the flat cylindrical metric:

       η  =

            -1          0          0          0

             0          1          0          0

             0          0          r²         0

             0          0          0          1.

Let the pressure in the tangential φ direction be q and the pressure in the radial direction p. We have

       p(r)   =  P / r  +  Q(r),

where P is a constant. Here

       Q'(r)  =  q / r.

We assume that r and φ are orthogonal in the metric g. There might be a shear stress s between r and φ?

The stress-energy tensor is

       Tμν  =

           ρ          0          0           0

           0          p          s           0

           0          s          q r²       0

           0          0          0           0












To determine the stress-energy tensor T, we used the formulae of the Karl Schwarzschild 1916 paper of an interior solution. There,

       T²₂  =  -q

denotes the "proper" positive pressure q which an observer would measure (though the minus sign in -q remains unexplained). The component

       T₂₂  =  T²₂  g₂₂  =  q r².

Karl Schwarzschild uses the metric signature (- - - +), where time is the 4th component.

The trace of the stress-energy tensor T is

       Tr  =  g⁰⁰ ρ  +  g¹¹ p  +  g²² q r²  +  2 g¹² s

             ≈  -ρ  +  p  +  q.

The Ricci tensor is

       Rμν  ≈  T  -  1/2 Tr g

               =

  1/2 ρ + 1/2 p    0                        0                       0
  + 1/2 q

   0                      1/2 ρ + 1/2 p     s                       0
                            - 1/2 q

   0                      s            1/2 ρ r² - 1/2 p r²         0
                                          + 1/2 q r²

   0                      0                        0     1/2 ρ - 1/2 p
                                                             - 1/2 q


Ricci curvatures


2 R₁₃  =  dg' / dz  +  1 / r * dg₁₁ / dz    = 0,
                                                        
2 R₀₀  =  -g''     -  g' / r     -  d²g / dz²    = ρ + p + q,
                                                         
2 R₃₃  =  -g₃₃''  -  g₃₃' / r  +  d²g / dz² 
                                                        
                                                  - d²g₁₁ / dz² 

                     + 2 dg₁₃' / dz

                     + 2 / r * dg₁₃ / dz             = ρ - p - q,
                                                 
2 R₁₁  =  g''  -  g₃₃''  +  g₁₁' / r  -  d²g₁₁ / dz²

                     + 2 dg₁₃' / dz                    = ρ + p - q,
                       
2 R₂₂ / r² 

          =  g' / r  -  g₃₃' / r  +  g₁₁' / r

                     + 2 / r * dg₁₃ / dz             = ρ - p + q.

The first equation gives:

       dg₁₁ / dz     =  -r  dg' / dz,
  =>
       d²g₁₁ / dz²  =  -r  d²g' / dz².

Sum the two last and use the two previous:

      -2 d²g / dz²  + 2 g₁₁' / r  =  2 ρ  +  2 p  +  2 q
  <=>
       g₁₁' / r  =  d²g / dz²  +  ρ  +  p  +  q.

       g₃₃'  =  g₁₁'  +  g'  -  ρ r  +  p r  -  q r

               =  r d²g / dz²  +  ρ r  +  p r  + q r

                            + g'  -  ρ r  +  p r  -  q r

               =  r d²g / dz²  +  g'  +  2 p r
  =>
       g₃₃''  =  d²g / dz²  +  r d²g' / dz²  +  g''

                  + 2 p  +  2 p' r.

Calculate g₃₃' / r + g₃₃'' in two ways:

       g₃₃' / r  +  g₃₃''  =  d²g / dz²  +  g' / r

                                     + 2 p

                                     + d²g / dz²

                                     + r d²g' / dz²

                                     + g''

                                     + 2 p  +  2 p' r

                                 =  d²g / dz²  -  d²g₁₁ / dz²

                                      - ρ  -  p  -  q

                                      + 4 p  +  2 p' r

                                 =  d²g / dz²  -  d²g₁₁ / dz²

                                      - ρ  +  3 (P / r  +  Q)

                                      + 2 (-P / r² + q / r) * r

                                      -  q

                                 =  d²g / dz² - d²g₁₁ / dz²

                                      - ρ  +  P / r  +  3 Q  +  q.

       g₃₃'' +  g₃₃' / r  =  d²g / dz²  -  d²g₁₁ / dz² 

                                      - ρ  +  P / r  +  Q  +  q.

A contradiction:  3 Q = Q.

The contradiction is the same as in our April 22, 2024 post about an r, z shear inside a cylinder.


An analysis of the shear


                 |
                 |   p₁
                 |
                 v

             _____
            |         |
            |_____|
             
                 ^
                 |   p₂
    ^ r              
    |
     --------> φ



Let the box be 1 × 1 × 1 in the coordinates r, φ, and z. Since the pressure p₁ from up is larger than the pressure p₂ from down, there have to exist shear forces which support the box.

If we would draw the shear forces into the diagram, they would look like the ones which we drew on April 22, 2024.

There is a paradox, though: if the shear s decreases when we go to the right in the diagram, what happens when we have gone a full circle 2 π?


Conclusions


This example is simpler than our April 22, 2024 post where the cylinder had shear between the r and z coordinates. We obtain the exact same contradiction as on April 22.

Monday, April 22, 2024

Gravitational lensing outside a finite cylinder

Our April 21, 2024 post brought up a very important observation: we can test general relativity by looking at gravitational lenses in the sky.


Gravitational lenses in the sky


Our calculations suggest that the approximate spatial metric perturbation around a finite cylinder is very different from the perturbation which we obtain by summing Schwarzschild metric perturbations for the mass elements which make up the cylinder.

But in the literature no one mentions that the gravitational lens of an elongated object would be anything special. There are filament-like structures in the sky. These should act like cylinders as gravitational lenses.














Above, in the image, we have the inferred dark matter distribution in the 2024 paper by N. Natarajan et al. (Figure 3, galaxy cluster MACS 0416). The dark matter is shown as blue haze.

















M. Annunziatella et al. (2017) present another mass density profile for MACS 0416 (Figure 2 in the paper).

Our calculations on April 13, 2024 suggest that the lens effect near a finite cylinder comes solely from the newtonian gravity effect on time, g₀₀, not from a distorted radial spatial metric.

In the Schwarzschild metric, the lens effect is twice the newtonian gravity effect, because of the stretched radial metric.

If the authors use a sum of Schwarzschild metric perturbations, they will think that the mass of the filament is only 1/2 of the mass predicted by general relativity.

At first sight, the image above does not "look like" that the mass of the filament between the two large mass concentrations would be underestimated.

It could well be that the Schwarzschild metric is the correct way to model cylinder lens effects! Then general relativity is wrong.


Matthias Bartelmann (2010), in section 1.4 of the paper in the link, writes that one uses a "newtonian metric", whose formula (28 in  the paper) seems to be the Schwarzschild metric.













Douglas Clowe et al. (2006) analyzed the lensing "strength" in the Bullet Cluster (Figure 1 in their paper). The lensing looks a lot like two Schwarzschild metric perturbations.

If the mass distribution is two spherical masses, like in the Bullet Cluster, then we get a very good approximation for the metric by summing the Schwarzschild perturbations. The cylinder metric requires that there is a continuous filament of mass.

Most papers about lensing ignore the discussion of general relativity.


The entire metric around a finite cylinder


Let us use our formulae to approximate the vacuum metric around a finite cylinder.

2 R₁₃  =  dg' / dz  +  1 / r * dg₁₁ / dz              = 0,
                                                        
2 R₀₀  =  -g''  -  g' / r   -  d²g / dz²                    = 0,
                                                         
2 R₃₃  =  -g₃₃''  -  g₃₃' / r  +  d²g / dz² 
                                                        
                                                   - d²g₁₁ / dz² 

                    + 2 dg₁₃' / dz  +  2 / r * dg₁₃ / dz = 0,
                                                 
2 R₁₁  =  g''  -  g₃₃''  +  g₁₁' / r  -  d²g₁₁ / dz²

                    + 2 dg₁₃' / dz                                = 0,
                       
2 R₂₂ / r²  =  g' / r  -  g₃₃' / r  +  g₁₁' / r

                    + 2 / r * dg₁₃ / dz                         = 0.

We will delay this calculation to a later time.


Conclusions


The observations about the gravitational lens effect of a filament in the sky are not accurate enough, yet. They do not reveal if general relativity calculates correctly the metric inside a cylinder and around it.

Metric inside a cylinder: shear and nonuniform radial pressure

Once we found the correct (?) approximate equations for the Ricci curvatures, it is surprisingly easy to find approximate solutions of g for any mass distribution in cylindrical coordinates.

Our equations do not contain any "second order" terms where there is a product of two metric perturbations. Finding exact solutions for the Einstein equations is notoriously difficult. Apparently, the second order terms make it difficult.


Nonuniform radial pressure and shear


The equations can be solved easily if the radial pressure is p / r, where p is a constant. What about more complicated pressure fields?


                          |  p₁  >  p₂
                          |
                          v
    s shear
    ^             (F₁ + F₂) / 2  
    |                <------
                     ______                                 
      F₁  ^      |           |    |    F₂ < F₁
            |      |______|    v

                      ------>
                 (F₁ + F₂) / 2

                          ^
                          |  p₂

                     ------> s shear
      ^ r
      |
       -------> z


The radial pressure is initially

       P / r,

where P is a constant. If we use a shear force F, we can manipulate the radial pressure. Let us set the shear s on the r, φ plane to the direction r to

       s(r, z)  =  K  -  S(r) z,

where K is a (largish) constant > 0 and S(r) > 0.

Then the shear reduces the pressure p as we go closer to the center of the cylinder. Let in the diagram, the box be a cube 1 × 1 × 1. The net force |F₁| - |F₂| which lifts the box up is

       S(r).

The pressure is then:

       p(r)  =  P / r  +  Q(r),

where P is a constant, and Q'(r) = S(r).


We can assume an orthogonal metric


We assume that the metric is cylindrically symmetric. Can we assume that the metric is orthogonal?

If we start from the flat metric in cylindrical coordinates, then the metric is orthogonal, of course. But if we perturb the metric in a cylindrically symmetric way, then the coordinate lines of r = constant and z = constant can start to "bulge", when viewed in the perturbed metric. The coordinate lines are no longer orthogonal, when measured in the perturbed metric.






















Can we define new coordinates in such a way that the coordinate lines become orthogonal again? It is obvious (?) that we can draw almost horizontal Z = constant lines in such a way that they intersect the r = constant lines at right angles. The new coordinates r, Z have an orthogonal metric.

Thus, we can assume that the metric g has no off-diagonal components.


The stress-energy tensor


The stress-energy tensor is

       T  =

               ρ         0         0         0

               0         p         0         s

               0         0         0         0

               0         s         0         0,

and its trace

       Tr  =  g⁰⁰ ρ  +  g¹¹ p   +  2 g¹³  s

             =  -ρ  +  p  -  2 g₁₃ s

             =  -ρ  +  p.

The approximate Ricci tensor

       R  =  T  -  1/2 Tr g

            =   

   1/2 ρ + 1/2 p   0                       0                      0

   0                      1/2 ρ + 1/2 p    0                      s

   0                      0            1/2 ρ r² - 1/2 p r²      0

   0                      s                        0    1/2 ρ - 1/2 p


Ricci curvatures


2 R₁₃  =  dg' / dz  +  1 / r * dg₁₁ / dz

                                                      = 2 K - 2 S z,
                                                        
2 R₀₀  =  -g''  -  g' / r   -  d²g / dz²   

                                                      = ρ + P / r + Q,
                                                         
2 R₃₃  =  -g₃₃''  -  g₃₃' / r  +  d²g / dz² 
                                                        
                                                   - d²g₁₁ / dz² 

                      + 2 dg₁₃' / dz  +  2 / r * dg₁₃ / dz 

                                                       = ρ - P / r - Q
                                                 
2 R₁₁  =  g''  -  g₃₃''  +  g₁₁' / r  -  d²g₁₁ / dz²

                     + 2 dg₁₃' / dz            = ρ + P / r + Q,
                       
2 R₂₂ / r²  =  g' / r  -  g₃₃' / r  +  g₁₁' / r

                     + 2 / r * dg₁₃ / dz     = ρ - P / r - Q.

The first equation gives:

       dg₁₁ / dz     =  -r dg' / dz  +  2 K r  -  2 S z r
  =>
       d²g₁₁ / dz²  =  -r d²g' / dz²  -  2 S r

                           =  -r d²g' / dz²  -  2 Q' r.

Sum the two last and use the two previous:

      -2 d²g / dz²  + 2 g₁₁' / r  =  2 ρ + 2 P / r + 2 Q
  <=>
       g₁₁' / r  =  d²g / dz²  +  ρ  +  P / r  +  Q.

       g₃₃'  =  g₁₁'  +  g'  -  ρ r  +  P  +  Q r

               =  r d²g / dz²  +  ρ r  +  P  +  Q r

                            + g'  -  ρ r  +  P  +  Q r 

               =  r d²g / dz²  +  g'  +  2 P  +  2 Q r
  =>
       g₃₃''  =  d²g / dz²  +  r d²g' / dz²  +  g''

                                                + 2 Q  +  2 Q' r.

       g₃₃' / r  +  g₃₃''  =  d²g / dz²  +  g' / r

                                                + 2 P / r  +  2 Q

                                    + d²g / dz²

                                    + r d²g' / dz²

                                    + g''  +  2 Q  +  2 Q' r

                                =  d²g / dz²

                                    + r d²g' / dz²  +  2 Q' r

                                    + 2 P / r  +  4 Q

                                    + g''  +   g' / r  +  d²g / dz² 
                   
                                =  d²g / dz²  -  d²g₁₁ / dz²

                                     + 2 P / r  +  4 Q

                                     - ρ  -  P / r  -  Q

                                 =  d²g / dz²  -  d²g₁₁ / dz²

                                     - ρ  +  P / r  +  3 Q.

       g₃₃''  +  g₃₃' / r  =  d²g / dz²  -  d²g₁₁ / dz² 

                                     - ρ  +  P / r  +  Q.

We obtain a contradiction: 3 Q = Q.


Working with shear stresses


We are not familiar with working with shear stresses. The calculation above may be erroneous.

Is it possible to have shear stresses with such simple functions:

       T₁₃  =  T₃₁  =  K  -  S(r) z  ?

The torques of the shear stresses T₁₃ and T₃₁ cancel each other out. Our box in the above diagram will not start to spin. The shear causes the radial pressure p to be larger at larger r.

The shear does not produce a pressure in the z direction because the forces to the left and to the right are equal in the diagram.


Conclusions


We were able to derive the exact same contradiction in our April 24, 2024 post where we manipulate the radial pressure by putting a tangential pressure on the coordinate φ.

As if general relativity cannot handle pressure which changes spatially. Shear forces are then involved.

Recall that we on November 5, 2023 tentatively proved that general relativity cannot handle a pressure which changes in time.

Sunday, April 21, 2024

Update on cylinder metrics

Once we removed (?) calculation errors in the cylindrical coordinates, it turned out that finding an approximate static metric g for any cylindrically symmetric static mass distribution is surprisingly easy. We can proceed like this:

1.   Assume that the metric is orthogonal. Make g₂₂ fixed r². Assume that fields are weak.

2.   Determine the metric g₀₀ from the newtonian gravity potential V of the mass.

3.   Solve g₁₁' from four equations.

4.   Solve g₃₃.


We ignore all terms which are a product of two "perturbations".

Thus, general relativity, in its approximate form, does have quite a lot of "freedom" to allow a solution.


Treating the z coordinate as a "time" coordinate in a static configuration: shear


On November 5, 2023 we tentatively proved that a time-dependent pressure breaks the Einstein field equations.


          ^  r
          |
          |
           -------------------------------> z "time"


Currently, we are studying if we can treat the z axis like a "time" coordinate in a static cylindrical setup. Can the Einstein field equations handle "changes" in pressure and shear stresses when we travel along the z axis?

Having just radial pressure does not require any "interaction" between different values of z. An approximate metric is found easily. Shear stresses add an "interaction" on the z axis. Can the Einstein equations handle that?


Gravitational lensing in the sky and the metric around a cylinder


Our formulae suggest that the vacuum spatial metric around a cylinder is strange: the spatial metric is stretched in the z direction, but not in the radial r direction. Though, this has to be checked carefully. In the Levi-Civita metric, also the r and φ dimensions are stretched. We are interested in gravitational lensing, and have to determine proper distances for rays of light. Different coordinate systems can confuse the "true" perturbation of the spatial metric, for an actual ray of light which travels through the perturbed metric.

For a point mass, a half of the gravitational lensing effect comes from the stretching of the r metric. Should we see surprisingly little gravitational lensing around an elongated object when viewed from the side? We are now looking at the literature and at actual astronomical observations.

















P. Natarajan et al. (2024) calculated the dark matter distribution of the galaxy cluster MACS 0416 using the Lenstool software (the picture above is from Image 3 in their paper).

Questions:

1.   Is Lenstool aware of the metric which the Einstein equations give around a cylinder?

2.   If yes, do the actual observations match that metric?


The "true" perturbation of the spatial metric


Suppose that we have an approximate solution for the Einstein field equations inside or outside a finite cylinder.

In our calculations we have defined r as 1 / (2 π) of the proper length of a circle drawn with r as the radius.

It could still be that the spatial metric is stretched in both the φ dimension and the r dimension. In that case, there is gravitational lensing, even though, superficially, the metric appears flat close to the cylinder.

How to detect such stretching in the metric? Far away from the cylinder, the metric approaches the Schwarzschild metric, in which there is no stretching in the φ dimension. Does this rule away the possibility that φ is stretched close to the cylinder?


Conclusions


We will check if our formulae give the correct gravitational lensing around a finite cylinder. Far away, the metric is almost Schwarzschild. How does that affect the lensing?

We will check if astronomical observations match general relativity.

We will check if shear stresses break the Einstein equations inside a long cylinder.

Saturday, April 13, 2024

Vacuum metric around a finite cylinder

UPDATE April 16, 2024: We did not prove anything yet on April 8, 2024. More research is needed. The rubber block squeezing model is our best bet.


                      |   squeeze
                      v
 2 R          ________
   |         /                 \              
   |       |                     |   semisphere
   |         \_________/
                 cylinder

                       ^
                       |   squeeze


We want to squeeze an elongated rubber block, with no shear. Is it so that the outside shape of the block has to stay constant? If yes, then the pressure inside the rubber in the semispherical end parts will be larger because there the volume is ~ R³, while in the cylindrical middle part, the volume is ~ R². It will not work.

The Schwarzschild metric would correspond to the semispheres, and the Levi-Civita metric to the cylindrical part.


                            local
                       |   squeeze
                       v
       -----------------------------  --> negative pressure
 
                 rubber        <-- positive pressure
 
      -----------------------------
                      ^
                      |   local
                           squeeze


In the diagram we have a long cylindrical rubber block. The surface of the block probably is horizontally stretched near the point where we apply the squeeze: there is a negative horizontal pressure in the surface. But at the center of the block there probably is a positive horizontal pressure which prevents the rubber from flowing away from the point which we squeeze. 

There is "shear" in the configuration. Shear in the meaning that in a "natural" coordinate system there is shear. The Cauchy stress tensor can always be diagonalized, and the shear disappears.

----

The difficulty in calculating Christoffel symbols and Ricci curvatures lies in the three indices which are carried around. The formulae are better suited for a computer than a human. We may in the future repeat the calculations in Mathematica or some other symbolic calculator.

Another difficulty is that it is not easy to see if the results are reasonable. The human intuition about metrics in three or four dimensions is not too well developed.


The coordinates


The coordinates are the standard cylindrical coordinates t, r, φ, and z, which are given numbers 0, 1, 2, 3, in this order. The metric signature is (- + + +).


            ^ r
            |
            |              L length
            0   ===========  cylinder
 
            --------------|-------------> z
                            0
       

We have z = 0 at the midpoint of the cylinder. The radial coordinate is r = 0 at the center of the cylinder

We denote the derivative with respect to r by the prime '.


The assumptions


1.   The metric g is a small perturbation of the flat metric η.

2.   The metric g is static, i.e., it has no time dependence.

3.   The metric g is rotationally symmetric around the axis of the cylinder.

4.   The metric g is mirror symmetric around the midpoint of the cylinder.

5.   The cylinder is uniform, rotationally symmetric, and of a finite length L. There is no significant pressure.

6.   The newtonian gravity potential gives a fairly good approximation of the metric of time, g₀₀.

7.   The metric of the φ coordinate is the simple g₂₂ = r².

8.   We allow the off-diagonal component g₁₃ to be non-zero (r and z metrics are skewed). Other off-diagonal components are zero.


If assumption 6 would not be true, then we would observe strange behavior in gravitational lenses in the sky. Also, the Cavendish torsion balance experiment would give odd results for a cylindrical weight. Orbits of planets might differ from the ones calculated with post-newtonian methods.

Assumption 6 could also be taken as an axiom: a theory of gravity must be close to newtonian gravity for weak fields.

The same grounds apply for assumption 1. If a small mass would create large perturbations of the flat metric, then we would see odd phenomena in gravitational lenses.

Assumption 6 can be made true by defining r  = 1 / (2 π)  *  the proper length of the circle around the axis of the cylinder.


The inverse metric g⁻¹


The formulae of Christoffel symbols require us to know the inverse matrix of g, because there are the factors like g¹¹ in the symbols. Let the metric be

       g  =

             g₀₀         0             0            0

             0            g₁₁          0            g₁₃
 
             0            0             r²           0

             0            g₁₃          0            g₃₃,

where g₀₀ is very close to -1, g₁₁ and g₃₃ are very close to 1, and g₁₃ is very close to 0. Then the inverse matrix is approximately

       g⁻¹  ≈

             1 / g₀₀    0             0              0

             0            1 / g₁₁     0             -g₁₃
 
             0            0             1 / r²        0

             0           -g₁₃          0          1 / g₃₃,

The elements of g⁻¹ are denoted g¹¹, and so on.


Christoffel symbols


We ignore all terms where there is the product of two "perturbations". That is, any product of two derivatives of g₀₀, g₁₁, or g₃₃, and any product of g₁₃ with a derivative of those.

Note that one can permute the subscripts of a Christoffel symbol, and the value does not change:

       Γ¹₁₃  =  Γ¹₃₁.










All the components of the metric g depend on r and z (1 and 3). No component depends on t or φ (0 and 2).

A non-zero Christoffel symbol must involve a derivative with respect to 1 or 3. This means that 1 or 3 has to be among k, i, j in the formula above.

Christoffel symbols involving 0 and 1 are of the form Γ¹₀₉, Γ⁰₁₉, or Γ⁹₀₁, where 9 denotes any coordinate.

       Γ¹₀₀  =  1/2 g¹¹  *  -dg₀₀ / dr,

       Γ⁰₁₀  =  1/2 g⁰⁰  *   dg₀₀ / dr  ≈  -1/2 g₀₀'.

All others are zero. Next we check Γ³₀₉, Γ⁰₃₉, and Γ⁹₀₃.

       Γ³₀₀  =  1/2 g³³  *  -dg₀₀ / dz,

       Γ⁰₃₀  =  1/2 g⁰⁰  *   dg₀₀ / dz  ≈  -1/2 dg₀₀ / dz.

The Christoffel symbol involving three times 1 is:

       Γ¹₁₁  =  1/2 g¹¹  *  dg₁₁ / dr.

The Christoffel symbols involving 1 twice are of the form Γ¹₁₉ or Γ⁹₁₁.

       Γ¹₁₃  =  1/2 g¹¹  *  dg₁₁ / dz,

       Γ³₁₁  =  g³³  *  dg₁₃ / dr

                    - 1/2 g³³  *  dg₁₁ / dz.

The symbols involving 1 and 2 are of the form Γ¹₂₉, Γ²₁₉, or Γ⁹₁₂.

       Γ¹₂₂  =  1/2 g¹¹  *  -dg₂₂ / dr

                =  -g¹¹  *  r,

       Γ²₁₂  =  1/2 g²²  *  dg₂₂ / dr

                =  1 / r.

The symbols involving 1 and 3 are of the form Γ¹₃₉, Γ³₁₉, or Γ⁹₁₃.

       Γ¹₃₃  =  g¹¹  *  dg₁₃ / dz  

                    + 1/2 g¹¹  *  -dg₃₃ / dr

       Γ³₁₃  =  1/2 g³³  *  dg₃₃ / dr.

The symbol involving three times 2 is zero. The symbols involving two 2 and one 3 are Γ²₂₃ and Γ³₂₂.

       Γ³₂₂  =  1/2 g³¹  *  -dg₂₂ / dr

                =  -g³¹  *  r.

The symbols involving two 3 and one 2 are Γ³₂₃ and Γ²₃₃, which are zero.

       Γ³₃₃  =  1/2 g³³  *  dg₃₃ / dz.

The Christoffel symbols calculated above are identical to the ones on April 8, 2024.


The off-diagonal curvature R₁₃


In vacuum, the stress-energy tensor T is zero. The Einstein field equations say that all components of the Ricci curvature tensor must be zero. In particular, the off-diagonal component R₁₃ must be 0.

A product Γ * Γ can only be significant if it contains Γ¹₂₂ or Γ²₁₂.

       R₁₃  =  dΓ¹₁₃ / dr  +  dΓ³₁₃ / dz

                   - dΓ⁰₃₀ / dr  -  dΓ¹₁₃ / dr

                   - dΓ³₃₃ / dr

                   + Γ²₂₁ Γ¹₁₃

              =  1/2 g³³  *  d²g₃₃ / (dr dz)

                  - 1/2 g⁰⁰  *  d²g₀₀ / (dz dr)

                  - 1/2 g³³  *  d²g₃₃ / (dz dr)
                 
                  + 1 / r  *  1/2 g¹¹  *  dg₁₁ / dz

              =  -1/2 g⁰⁰  *  d(g₀₀') / dz

                  + 1 / r  *  1/2 g¹¹  *  dg₁₁ / dz.

              ≈  1/2 ( d(g₀₀') / dz  +  1 / r  *  dg₁₁ / dz ).


R₀₀


       R₀₀  =  dΓ¹₀₀ / dr  +  dΓ³₀₀ / dz
                
                   + Γ²₂₁ Γ¹₀₀

               ≈  1/2 g¹¹  *  -d²g₀₀ / dr²

                    + 1/2 g³³  *  -d²g₀₀ / dz²

                    + 1 / r  *  1/2 g¹¹  *  -dg₀₀ / dr

               ≈  1/2 (  -g₀₀''  -  g₀₀' / r  -  d²g₀₀ / dz²  ).


R₁₁


       R₁₁  =  dΓ¹₁₁ / dr  +  dΓ³₁₁ / dz

                   - dΓ⁰₁₀ / dr  -  dΓ¹₁₁ / dr

                   - dΓ²₁₂ / dr  -  dΓ³₁₃ / dr

                   + Γ²₂₁ Γ¹₁₁  -  Γ²₁₂ Γ²₂₁

                ≈  dg₁₃' / dz  -  1/2 d²g₁₁ / dz²

                   + 1/2 g₀₀''

                   + 1 / r²  -  1/2 g₃₃''

                   + 1 / r  *  1/2 g₁₁'  -  1 / r²

               =  1/2 (   2 dg₁₃' / dz  -  d²g₁₁ / dz²

                              g₀₀'' -  g₃₃''  +  g₁₁' / r      ).


R₂₂


       R₂₂  =  dΓ¹₂₂ / dr  +  dΓ³₂₂ / dz

                  + (Γ⁰₀₁  +  Γ¹₁₁  +  Γ²₂₁  +  Γ³₃₁) Γ¹₂₂

                   -  Γ²₁₂ Γ¹₂₂  -  Γ¹₂₂ Γ²₁₂ 

              =  dΓ¹₂₂ / dr  +  dΓ³₂₂ / dz

                  + (Γ⁰₀₁  +  Γ¹₁₁  -  Γ²₂₁  +  Γ³₃₁) Γ¹₂₂

              =  d(-g¹¹  *  r) / dr

                  + d(-g³¹  *  r) / dz

                  + ( 1/2 g⁰⁰  *  dg₀₀ / dr

                       + 1/2 g¹¹  *  dg₁₁ / dr

                       - 1 / r

                       + 1/2 g³³  *  dg₃₃ / dr )

                                                           * -g¹¹  *  r.

We have:

       d(-g¹¹  *  r) / dr  =  -d(1 / g₁₁  *  r) / dr

                                   =  1 / (g₁₁)²  *  g₁₁'  *  r

                                       - 1 / g₁₁,

       d(-g³¹  *  r) / dz  =  r dg₃₁ / dz,

       R₂₂  =  g₁₁' / (g₁₁)² * r  -  1 / g₁₁ + r dg₃₁ / dz

                   - r / g₁₁ *

                       ( -1/2 g₀₀'

                       + 1/2 g₁₁' / g₁₁

                       - 1 / r

                       + 1/2 * 1 / g₃₃  *  g₃₃')

               =  1/2 r g₁₁' / (g₁₁)²

                   + 1/2 r g₀₀' / g₁₁

                   - 1/2 r g₃₃' / (g₁₁ g₃₃)

                   + r dg₃₁ / dz.


R₃₃


      R₃₃  =  dΓ¹₃₃ / dr  +  dΓ³₃₃ / dz

                  - dΓ⁰₃₀ / dz  -  dΓ¹₁₃ / dz  -  dΓ³₃₃ / dz

                  + Γ²₁₂ Γ¹₃₃

             =  g¹¹  *  d²g₁₃ / (dz dr)

                 + 1/2 g¹¹  *  -d²g₃₃ / dr²

                 - 1/2 g⁰⁰  *  d²g₀₀ / dz²

                 - 1/2 g¹¹  *  d²g₁₁ / dz²

                 + 1 / r  *  (g¹¹  *  dg₁₃ / dz  

                                   + 1/2 g¹¹  *  -dg₃₃ / dr)

             ≈  dg₁₃' / dz  +  1 / r  *  dg₁₃ / dz 

                 -  1/2 g₃₃''

                 + 1/2 d²g₀₀ / dz²

                 - 1/2 d²g₁₁ / dz²

                 - 1/2 g₃₃' / r.


The equations


       2 R₁₃  =  d(g₀₀') / dz  +  1 / r * dg₁₁ / dz   = 0,

       2 R₀₀  =  -g₀₀''  -  g₀₀' / r   -  d²g₀₀ / dz²      = 0,

       2 R₃₃  =  -g₃₃''  -  g₃₃' / r  +  d²g₀₀ / dz² 

                                                 - d²g₁₁ / dz² 

                   + 2 dg₁₃' / dz  +  2 / r * dg₁₃ / dz  = 0,

       2 R₁₁  =  g₀₀'' -  g₃₃''  +  g₁₁' / r

                                                - d²g₁₁ / dz²

                      + 2 dg₁₃' / dz                               = 0,

 2 R₂₂ / r² =  g₀₀' / r  -  g₃₃' / r  +  g₁₁' / r

                     + 2 / r * dg₁₃ / dz                         = 0.


Our April 8, 2024 calculations contained a significant error in R₃₃.


Conclusions


The calculations above were written carefully and might be correct.

We need to understand the role of shear and the R₁₃ curvature if we wish to derive a contradiction. We will next study the relationship between the Einstein field equations and rubber models.

Monday, April 8, 2024

Can a z dependence give a metric for a cylinder? Gravity lens observations in the sky

UPDATE April 14, 2024: We added a missing term dg₃₁' / dz to R₁₁. R₀₀ got a new contribution.

There is a serious sign error in g₀₀' and g₀₀'' !

----

UPDATE April 13, 2024: The long calculations below certainly contain errors. But if the end result is correct, then there is no vacuum solution for the Einstein equations around a finitely long cylinder. We will write a new blog post where we try to verify the result.

----

On April 2, 2024 we tentatively proved that inside most cylindrically symmetric configurations we cannot find any metric g which satisfies the Einstein field equations.

We used two major assumptions:

1.   weak fields: the metric g is very close to the flat Minkowski metric η;

2.   the metric g is cylindrically symmetric.


Let us investigate if we can drop the assumption that g has no z dependence.


Empirical observations of the metric near or inside a cylinder: gravity lenses and the Cavendish balance














(Photo ESA/Hubble & NASA Acknowledgement: Judy Schmidt)

Fortunately, gravity lens observations in the sky give us some constraints on how metrics can behave in the real world.

Suppose that we have an elongated object in the sky, like several galaxies in a row. If the gravity lens effect would substantially differ from the one which we obtain by summing perturbations of the metric linearly, we would have observed it.

This proves empirically that g₀₀, g₁₁, and g₃₃ near or inside a cylinder cannot obtain surprisingly large or small values, and their derivatives must behave in a reasonably smooth way.

Another way to measure g₀₀ empirically is to use a Cavendish torsion balance. We can measure the gravity field of various bodies fairly accurately, up to several decimals. If the metric of time g₀₀ would substantially differ from newtonian gravity near a cylinder, experimenters would probably have noticed it.

Yet another way to measure g₀₀ is to observe orbits of planets.

Empirical observations all suggest that the metric does not wildly vary from the one which we get by summing Schwarzschild metric perturbations linearly.


A finite cylinder


   ^ r
   |                            cylinder
    ----> z          ==============   
                                      L     <--- F


If the cylinder is of a finite length, then the newtonian gravity potential V is not exactly cylindrically symmetric. There is also weak force component F which points toward the middle point of the cylinder. The force component is ~ 1 / L², where L is the length of the cylinder. We can make the component as small as we like.

The mismatches which we obtained on April 2, 2024 are large. It would be surprising if a small deviation of the metric could remove the mismatch. But let us investigate.

Question. If the cylinder has a uniform mass density and is of a finite length, does that spoil the approximate solution for the metric which we found on April 2, 2024?


We suspect that the Einstein equations only have a solution for an infinitely long uniform cylinder. The Levi-Civita metric is a vacuum solution for an infinitely long cylinder.


The curvature in the time direction R₀₀


On April 2, 2024 we calculated for a cylindrically symmetric orthogonal metric that

       R₀₀  =  -1/2 g₀₀'' / g₁₁  +  1/2 g₀₀' g₁₁' / (g₁₁)²

                  - 1/2 g₀₀' / g₁₁ *
 
                         (-1/2 g₀₀' / g₀₀  +  1/2 g₁₁' / g₁₁

                          + 1 / r  +  1/2 g₃₃' / g₃₃)
   
               ≈  -1/2 g₀₀''  - 1/2 g₀₀' / r

The solution is

       g₀₀(r)  =  -1/4 ρ r²  -  C,

if the cylinder has a uniform mass density ρ.

Let us have a cubic constellation of initially static test masses. The curvature R₀₀ tells us how fast does the volume of the cube shrink if the test masses fall freely. The term g₀₀' describes how fast the sides of the cube approach each other, and the term g₀₀'' tells how fast the bottom and the top of the cube approach each other. Intuitively, it would require very large perturbations of the spatial metric to affect the shrinking process appreciably.

We dropped the term

       -1/2 g₀₀' / g₁₁  *  1/2 g₃₃' / g₃₃

in the approximation above. The term "competes" with the terms -1/2 g₀₀'' and 1/2 g₀₀' / r.

In order for the term to compete significantly, the value of g₃₃' should be of the order 1. The distortion of the spatial metric caused by a steel sphere of a diameter 10 cm is of the order

       rs / r,

where

       rs  =  2 G M / c²

            =  5 * 10⁻²⁷ m

is the Schwarzschild radius of a 4 kg sphere of steel. If the spatial metric distortion inside a cylinder of steel would be as large as ~ 1, it would be easy to observe in practice! We know empirically that the spatial metric inside a cylinder is very close to flat.

Is it possible to affect R₀₀ significantly with a small distortion of the spatial metric? What about skewed coordinates?


The curvature in the z direction R₃₃: allow z dependence and non-orthogonality


The curvature in the t direction cannot be changed without huge changes in the metric of space. The curvature in the z direction is entirely analogous to the time direction. The curvature for a cylindrically symmetric metric is:

       R₃₃  =  dΓ¹₃₃ / dr

                  + (Γ⁰₀₁ + Γ¹₁₁ + Γ²₂₁ + Γ³₃₁) Γ¹₃₃

                  - 2 Γ³₁₃ Γ¹₃₃

               =  -1/2 g₃₃'' / g₁₁  +  1/2 g₃₃' g₁₁' / (g₁₁)²

                   - 1/2 g₃₃' / g₁₁ *

                    (1/2 g₀₀' / g₀₀  +  1/2 g₁₁' / g₁₁

                     + 1 / r  -  1/2 g₃₃' / g₃₃)

               ≈  -1/2 g₃₃''  -  1/2 g₃₃' / r.

Can we change R₃₃ substantially by distorting either g₁₁ or g₃₃ or g₁₃?


Non-orthogonality











If the metric g is slightly skewed, then off-diagonal components g₁₃, etc., have values which slightly differ from zero. The inverse matrix g⁻¹, similarly, has components g¹³, etc., which slightly differ from zero, but have the opposite sign.

The Christoffel symbol terms with the factor

       1/2 g¹³

in front of them obtain very small absolute values if all the derivatives in the brackets are small. We can (probably) ignore such terms. The only large derivative is

       dg₂₂ / dr.

The symbols

       Γ³₂₂  =  1/2 g³¹  *  -dg₂₂ / dr  =  -g³¹ r

and 

       Γ³₁₁  =  g³³ dg₁₃ / dr  =  g³³ g₃₁'

get new values which substantially differ from zero. The symbol Γ¹₃₃ gets a significant new contribution from the skew:

       ΔΓ¹₃₃  =  g¹¹ dg₃₁ / dr.

The derivative dΔΓ¹₃₃ / dr contributes to R₃₃:

       g¹¹ g₃₁''.

In the products Γ * Γ, the new values contribute significantly if 

       Γ¹₂₂  =  1/2 g¹¹  *  -dg₂₂ / dr  =  -r / g₁₁

or

       Γ²₁₂  =  1/2 g²²  *  dg₂₂ / dr   =  1 / r

is involved:

       Γ²₂₁ Γ¹₃₃  =  1 / r  *  g¹¹ g₃₁'.

Since g¹¹ is very close to 1, we conclude that the skew adds

       g₃₁''  +  g₃₁' / r

to R₃₃. The terms look a lot like the ones which R₃₃ already has.

On March 10, 2024 we tried to calculate (and made errors) the Schwarzschild metric in cartesian coordinates. There the nondiagonal component of the metric for the x and y coordinates (g₁₂) was very substantial. In the case of a long cylinder we expect the skew to be much less, probably insignificant.


We do not yet make g₀₀ to depend on z


We assume that newtonian gravity describes g₀₀ very accurately. Then, by making the cylinder very long and lightweight, we can make g₀₀ to be essentially independent of z close to the midpoint of the cylinder. This helps us greatly in the calculations.


Make g₃₃ to depend on z


The only significant change is a non-zero value:

       Γ³₃₃  =  1/2 g³³ dg₃₃ / dz.

It does not contribute anything significant to R₃₃.


Make g₁₁ to depend on z


       ΔΓ³₁₁  =  1/2 g³³  *  -dg₁₁ / dz,

       Γ¹₁₃  =  1/2 g¹¹  *  dg₁₁ / dz.

The derivative

       -dΓ¹₁₃ / dz  =  -1/2 g¹¹  d²g₁₁ / dz²

contributes to R₃₃.


Contributions to R₃₃


The new formula is

       R₃₃  ≈  -1/2 g₃₃''  -  1/2 g₃₃' / r

                   + g₃₁''  +  g₃₁' / r

                   - 1/2 d²g₁₁ / dz².

We must investigate if this can help us to find a metric which matches a nonuniform cylinder.


Contributions to R₁₁


       dΓ³₁₁ / dz  =  -1/2 g³³  d²g₁₁ / dz²

                             + d(g³³ g₃₁') / dz,

       R₁₁  ≈  1/2 (g₀₀'' + g₁₁' / r - g₃₃'')

                   - 1/2 d²g₁₁ / dz².

                   + dg₃₁' / dz.

Contributions to R₂₂


       dΓ³₂₂ / dz  =  -dg³¹ / dz.

       R₂₂  ≈  1/2 r (g₀₀' + g₁₁' - g₃₃')

                  + r dg³¹ / dz.


Off-diagonal curvature R₁₃


       Γ¹₃₃  =  1/2 g¹¹ * -dg₃₃ / dr   =  -1/2 g₃₃' / g₁₁,

       Γ³₁₃  =  1/2 g³³ * dg₃₃ / dr    =   1/2 g₃₃' / g₃₃,

       R₁₃  =  dΓ¹₁₃ / dr  +  dΓ³₁₃ / dz

                  - dΓ¹₃₁ / dr

                  - dΓ³₃₃ / dr 

                  + Γ²₂₁ Γ¹₁₃

              =  d(1/2 g₃₃' / g₃₃) / dz

                  - d(1/2 g³³ dg₃₃ / dz) / dr

                  + Γ²₂₁ Γ¹₁₃

              ≈  1 / r  *  1/2 g¹¹  *   dg₁₁ / dz.

If the stress-energy tensor contains no shear stress, then R₁₃ = 0, and g₁₁ cannot depend on z.

But if we present the Schwarzschild metric in cylindrical coordinates, there g₁₁ does depend on z. We assumed that g₀₀ does not depend on z. Could that explain? Yes.


Updated Ricci curvatures where a skew and variation on z is allowed: gravity lenses in the sky


If we calculated right (probably not), we obtain new equations for a nonuniform finite cylinder.

       2 R₀₀         =  -g₀₀''  -  g₀₀' / r

                         =  ρ(r),

       2 R₃₃         =  -g₃₃''  -  g₃₃' / r

                             + g₃₁''  +  g₃₁' / r

                         =  ρ(r),

       2 R₁₁         =  g₀₀''     +  g₁₁' / r  -  g₃₃''

                             - d²g₁₁ / dz²  +  dg₃₁' / dz.

                         =  ρ(r),

       2 R₂₂ / r²  =  g₀₀' / r  +  g₁₁' / r  -  g₃₃' / r

                             + r dg₃₁ / dz
   
                         =  ρ(r).

At the midpoint of the cylinder we can assume that dg₃₁ / dz = 0 and dg₃₁' / dz = 0. The skew g₃₁ at the midpoint is zero, and so are its derivatives with respect to r.


Is it possible to have an "elongated" metric with no "shear"?


Question. If there is no pressure, then the Ricci curvature must have all nondiagonal components zero. But can that be true if we rotate the coordinate system slightly?


Suppose that the Ricci curvature is non-zero in the x direction and zero in the y direction. What happens in a slight coordinate rotation? It cannot be zero in the y direction?

An analogous problem: suppose that we have a pressure in the x direction but not in the y direction. If we rotate the coordinates, we do not get a shear force. We only have pressure. Thus, a coordinate rotation cannot create a shear force.

Question. If we have an "elongated" system, is it possible that the metric has the Ricci curvature tensor purely diagonal? Does elongation necessarily introduce a "shear" in the Ricci curvature?


If we have a cubic configuration of test masses falling freely in newtonian gravity, the tidal forces probably can squeeze or stretch the cube, but cannot distort it in a "lopsided" way: there is no "shear" which would distort the cube.

But if we add the necessary distortion of the spatial metric, do we get a shear when we move test particles along geodesics to a certain spatial coordinate direction, say, z?We do not have any shear in the Schwarzschild metric or the Levi-Civita metric. But what about a cylinder of a finite length? Such a cylinder is an elongated system.










(Photo amazon.com)

Let us think about a block of rubber. We can certainly squeeze it in a spherically symmetric way without introducing shear. We can also squeeze it in a cylindrically symmetric way with no shear. But can we make the squeezing elongated, like around a cylinder of a finite length, without introducing shear?

We may require that the displacement of the rubber diminishes as we go farther from the squeezed place, and that the displacement very far away is almost spherically symmetric.

Let us have the displacement vector fields D₁ and D₂ for two spherically symmetric squeezes of rubber, with different centers P₁ and P₂.


                             no pressure
       push --->  •                           •  <--- push
                        P₁                         P₂


The displacement field D₁ + D₂ is not sensible because between P₁ and P₂, there would be no pressure to counteract the pressure which pushes from the left and the right. One can easily sum the "metric perturbations" which the squeezing introduces, but the sum is not physically reasonable.

If we replace the rubber block with a compressible liquid, then there must exist a solution where there is no shear force. But the density variations of the liquid may be such that there is no way to realize them in rubber without shear.


The Einstein equations in vacuum around a cylinder


What about the metric in the vacuum around the cylinder? Is it possible to find a metric which is "elongated" and has no off-diagonal components?

We now make g₀₀ to depend on z.

       Γ⁰₃₀  =  1/2 g⁰⁰  dg₀₀ / dz,

       Γ³₀₀  =  1/2 g³³  *  -dg₀₀ / dz.

The off-diagonal curvature is then

       R₁₃  =  1 / r * 1/2 g¹¹ * dg₁₁ / dz

                  - dΓ⁰₃₀ / dr

               =  1 / r * 1/2 g¹¹ * dg₁₁ / dz

                  - d(1/2 g⁰⁰ dg₀₀ / dz) / dr

               ≈  1 / r * 1/2 g¹¹ * dg₁₁ / dz

                    - 1/2 g⁰⁰ d(g₀₀') / dz

               ≈  1/2 (1 / r * dg₁₁ / dz  +  d(g₀₀') / dz).  

R₃₃ gets a new contribution:

       -dΓ⁰₃₀ / dz  =  -1/2 g⁰⁰  d²g₀₀ / dz².

R₀₀ gets a new contribution:

       dΓ³₀₀ / dz  =  1/2 g³³  *  -d²g₀₀ / dz².

Suppose that we (miraculously) calculated right in this blog post. What do the equations say about vacuum solutions?

       2 R₁₃         =  1 / r * dg₁₁ / dz

                             + d(g₀₀') / dz                        =  0,

       2 R₀₀         =  -g₀₀''  -  g₀₀' / r

                                                     - d²g₀₀ / dz² =  0,

       2 R₃₃         =  -g₃₃''  -  g₃₃' / r  +  d²g₀₀ / dz²

                             + g₃₁''  +  g₃₁' / r                  =  0,

       2 R₁₁         =  g₀₀''     +  g₁₁' / r  -  g₃₃''      

                             - 1/2 d²g₁₁ / dz²

                             + dg₃₁' / dz                          =  0,

       2 R₂₂ / r²   =  g₀₀' / r  +  g₁₁' / r  -  g₃₃' / r

                            + r dg₃₁ / dz                              =  0.

Suppose that we have a long cylinder of a finite length L. Can we prove that the equations above cannot be satisfied?

The formula for g₀₀ we get from newtonian gravity. If the metric of time would not be close to the newtonian approximation, we would have noticed that in gravity lenses in the sky.


                                V gravity potential

                                • m test mass
                                | 
                                v  F
^ r
|
 ----> z        ==============
                                L length

                = ------------------------> move a segment
               Δz

    
Initially, m is at the midpoint of the cylinder. Let us move a short segment from one end of the cylinder to the other. The length of the segment is Δz. The segment moves from a distance L / 2 - 1/2 Δz to a distance L / 2 + 1/2 Δz. How does the potential V of m change?

The change in V is

       ~  2 Δz / (L - Δz)  -  2 Δz / (L + Δz)

       =  4 Δz² / (L² - Δz²)

       ~  Δz² / L².

The potential V is something like

       V  ~  ln(r)  +  C z² * (1  -  1/2 r² / L²)

            ~  -g₀₀ + 1,

if we define the midpoint of the cylinder as z = 0. There C is a positive constant. Then

       g₀₀'  =  -1 / r  -  C z² r / L².

The equation about R₁₃ tells us that 

       dg₁₁ / dz     =  -r  *  d(g₀₀') / dz  = 0
  =>
       d²g₁₁ / dz²  =  2 C z r² / L².

We work at the midpoint z = 0. Summing the equations for R₁₁ and R₂₂, and summing the equation for R₀₀ and subtracting the equation for R₃₃ yields:

       2 g₁₁' / r  =  1/2 d²g₁₁ / dz²  + 2 d²g₀₀ / dz²

                       =  C z r² / L²  -  4 C
  =>
       g₁₁' / r     =  1/2 C z r² / L²  -  2 C.

The equation for R₂₂ gives:

       g₀₀'  -  g₃₃'    =  -1/2 C z r³ / L²  +  2 C r.
  =>
       g₀₀''  -  g₃₃''  =   -3/2 C z r² / L²  +  2 C.

The equation for R₁₁ gives:

       g₀₀''  -  g₃₃''  =  ...

Maybe we have to modify the cylinder, so that the potential gets a more complicated formula where r and z have a complex interaction? In the Schwarzschild metric,

       V  ~  -1 / sqrt(r² + z²).


The Rij equations for an arbitrary newtonian potential V


We know that the newtonian gravity potential satisfies ∇²V = 0 in vacuum. Can we prove that all such V satisfy the equations?

Probably not. The potential V has also other features besides having the laplacian zero.

       0  =  ∇²V  =  d²V / dx²  +  d²V / dz²,

where x is a cartesian coordinate to the r direction. The "flow" of lines of force, ∇V, must be zero.


         r
         ^
         |        ____
         |        \___/

          
In cylindrical coordinates, it is

       0  =  1 / r  *  dV / dr

               + d²V / dr²  +  d²V / dz².

which is equivalent to

           1 / r  *  dg₀₀ / dr

           + d²g₀₀ / dr²     +  d²g₀₀ / dz²

       =  g₀₀' / r  +  g₀₀''  +  d²g₀₀ / dz²

       =  0
  =>
       d²g₀₀ / dz²  =  -g₀₀''  -  g₀₀' / r.

       R₁₃  =  1/2 (1 / r  *  dg₁₁ / dz  +  d(g₀₀') / dz)

              =  0.

The equation for R₁₃ says:

       dg₁₁ / dz     =  -r  *  d(g₀₀') / dz
  =>
       d²g₁₁ / dz²  =  -r  *  d( d²(g₀₀) / dz² ) / dr

                           =   r  *  g₀₀'''.

At the midpoint (z = 0) we have:

       2 R₀₀        =  -g₀₀''  -  g₀₀' / r

                           + g₀₀''  +  g₀₀' / r                   =  0,

       2 R₃₃        =  -g₃₃''  -  g₃₃' / r

                           - g₀₀''  -  g₀₀' / r                      =  0,

       2 R₁₁        =  g₀₀''  +  g₁₁' / r  -  g₃₃''      

                                                    - 1/2 r g₀₀'''  =  0,

       2 R₂₂ / r²  =  g₀₀' / r  +  g₁₁' / r  -  g₃₃' / r  =  0.

The equation about R₀₀ is identically true. It is the well-known fact that the volume of a free-falling cubical configuration of test masses does not change.

We have three equations, for R₁₁, R₂₂, R₃₃, and three unknowns, g₀₀, g₁₁, g₃₃. Is there a solution? There is an additional requirement that g₀₀ must arise from the potential V of some mass distribution. If we fix the mass distribution, then we have three equations for g₁₁ and g₃₃.

We could try the newtonian potential V of two symmetrically placed point masses M on the z axis, at locations -1 and 1.


           ^  r
           |                   
           |       M               M
             -------●------|------●-------> z
                   -1       0       1
          

       -V(r, 0)  =  1 / sqrt(1 + r²)

                      =  g₀₀(r).

We sum the two last equations and eliminate g₃₃ using the equation for R₃₃:


                2 g₀₀''  +  g₁₁' / r  -  1/2 r g₀₀'''

                + 2 g₀₀' / r  +  g₁₁' / r  =  0.

We obtain an equation for g₁₁ which we can solve. A trivial solution for the equation of R₃₃ is to set g₃₃ = -g₀₀.

We found a solution, and did not need to assume anything about the mass distribution, except that it is symmetric relative to z = 0.

If there are any problems in solving the equations, they come from the values z ≠ 0, where the off-diagonal component g₁₃ is non-zero. This is reasonable. In our rubber block squeezing model, we certainly can satisfy the shearlessness condition at the midpoint of the rubber block. If there are any problems with shear, they will arise at the ends of the block.

Actually, this is a way to derive the Schwarzschild metric. Because of the spherical symmetry, the solution at z = 0 must describe the entire metric.

Setting g₀₀  =  1 / r yields:

       4 / r³  +  3 / r³  -  2 / r³  =  -2 g₁₁' / r
  =>
       g₁₁'  = -5/2 * 1 / r².

We do not understand the origin of the 5/2, but otherwise, the result is as expected.


Test an "elongated" metric


The Schwarzschild metric in vacuum has the "shear" zero. What happens if we try to "squeeze" the metric near a cylindrical source? Far away, it will still be the Schwarzschild metric.

The full equations are listed, once again, below. We can assume that g₀₀ is very close to the newtonian potential V. Then the R₀₀ equation is identically true.

       2 R₁₃         =  1 / r * dg₁₁ / dz

                             + d(g₀₀') / dz                        =  0,

       2 R₀₀         =  -g₀₀''  -  g₀₀' / r

                                                     - d²g₀₀ / dz² =  0,

       2 R₃₃         =  -g₃₃''  -  g₃₃' / r  +  d²g₀₀ / dz²

                             + g₃₁''  +  g₃₁' / r                  =  0,

       2 R₁₁         =  g₀₀''     +  g₁₁' / r  -  g₃₃''      

                             - 1/2 d²g₁₁ / dz²

                             + dg₃₁' / dz                          =  0,

       2 R₂₂ / r²   =  g₀₀' / r  +  g₁₁' / r  -  g₃₃' / r

                            + r dg₃₁ / dz                              = 


Conclusions


Let us close this blog post. This was plagued by calculation errors. In our April 13, 2024 we try to get the formulae right.

It is certain that we cannot get a contradiction by looking at the midpoint z = 0 alone. The Schwarzschild metric is a solution. We have to study the whole range of z values.